Trong không gian \(Oxyz\), cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( B \right)\) cắt nhau
Trong không gian \(Oxyz\), cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( B \right)\) cắt nhau theo giao tuyến là đường thẳng \(\Delta \). Gọi \(\overrightarrow {{n_{\left( \alpha \right)}}} \) và \(\overrightarrow {{n_{\left( \beta \right)}}} \) lần lượt là vectơ pháp tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) tuơng ứng. Vectơ nào dưới đây là một vectơ chỉ phương của \(\Delta \)?
Đáp án đúng là: D
Quảng cáo
Sử dụng lý thuyết: \(\Delta = \left( \alpha \right) \cap \left( \beta \right) \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{u_\Delta }} \bot \overrightarrow {{n_{\left( \alpha \right)}}} \\\overrightarrow {{u_\Delta }} \bot \overrightarrow {{n_{\left( \alpha \right)}}} \end{array} \right.\)
Kí hiệu tích có hướng của hai véc tơ \(\overrightarrow a \) và \(\overrightarrow b \) là \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) hoặc \(\overrightarrow a \wedge \overrightarrow b \).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












