Cho hình chóp tam giác đều \(S.ABC\) có \(SA = 2a,AB = 3a.\) Gọi \(M\) là trung điểm \(SC.\) Tính
Cho hình chóp tam giác đều \(S.ABC\) có \(SA = 2a,AB = 3a.\) Gọi \(M\) là trung điểm \(SC.\) Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {SAB} \right)\).
Đáp án đúng là: D
Quảng cáo
+) Sử dụng công thức chuyển điểm: Nếu \(AB\) giao với mặt phẳng \(\left( P \right)\) tại \(M\) thì \(\dfrac{{d\left( {A,\left( P \right)} \right)}}{{d\left( {B,\left( P \right)} \right)}} = \dfrac{{AM}}{{BM}}\).
+) Tính khoảng cách dựa vào hệ thức lượng trong tam giác vuông
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













