Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{2x + 1}}{{{{\left( {x + 2}

Câu hỏi số 351141:
Vận dụng

Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{2x + 1}}{{{{\left( {x + 2} \right)}^2}}}\) trên khoảng \(\left( { - 2; + \infty } \right)\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:351141
Phương pháp giải

Đặt \(t = x + 2\), tính \(dx\) và thay vào tính nguyên hàm của hàm số đã cho.

Giải chi tiết

Đặt \(t = x + 2\left( {t > 0} \right) \Rightarrow x = t - 2 \Rightarrow dx = dt\).

Khi đó

\(\begin{array}{l}\int {\dfrac{{2x + 1}}{{{{\left( {x + 2} \right)}^2}}}dx}  = \int {\dfrac{{2\left( {t - 2} \right) + 1}}{{{t^2}}}dt} \\ = \int {\dfrac{{2t - 3}}{{{t^2}}}dt}  = \int {\left( {\dfrac{2}{t} - \dfrac{3}{{{t^2}}}} \right)dt} \\ = 2\ln t + \dfrac{3}{t} + C = 2\ln \left( {x + 2} \right) + \dfrac{3}{{x + 2}} + C\end{array}\) 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com