Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng
Cho phương trình \(2{x^2} - 6x + 3m + 1 = 0\) (với \(m\) là tham số). Tìm các giá trị của \(m\) để phương trình đã cho có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 9\).

Đáp án đúng là: A

Câu hỏi:351678
Phương pháp giải

Tìm điều kiện để phương trình có hai nghiệm.

Sử dụng định lý Vi – et thay vào điều kiện bào cho tìm \(m\) và kết luận.

Giải chi tiết

Cho phương trình \(2{x^2} - 6x + 3m + 1 = 0\) (với \(m\) là tham số). Tìm các giá trị của \(m\) để phương trình đã cho có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 9\).

Phương trình đã cho có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0\)

\(\begin{array}{l} \Leftrightarrow {3^2} - 2.\left( {3m + 1} \right) \ge 0\\ \Leftrightarrow 9 - 6m - 2 \ge 0\\ \Leftrightarrow 7 - 6m \ge 0\\ \Leftrightarrow m \le \frac{7}{6}.\end{array}\)

Khi đó phương trình có hai nghiệm \({x_1},{x_2}\).

Theo định lí Vi – et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a} = 3\\{x_1}{x_2} = \frac{c}{a} = \frac{{3m + 1}}{2}\end{array} \right.\)

Ta có: \(x_1^3 + x_2^3 = 9 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 9\)

\(\begin{array}{l} \Rightarrow {3^3} - 3.\frac{{3m + 1}}{2}.3 = 9 \Leftrightarrow 27 - \frac{9}{2}\left( {3m + 1} \right) - 9 = 0\\ \Leftrightarrow \frac{{27}}{2} - \frac{{27}}{2}m = 0 \Leftrightarrow m = 1\left( {TM} \right)\end{array}\)

Vậy \(m = 1\) thỏa mãn bài toán.

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng
Trung tâm thương mại VC tại thành phố NT có 100 gian hàng. Nếu mỗi gian hàng của Trung tâm thương mại VC cho thuê với giá 100.000.000 đồng (một trăm triệu đồng) một năm thì tất cả các gian hàng đều được thuê hết. Biết rằng, cứ mỗi lần tăng giá 5% tiền thuê mỗi gian hàng một năm thì Trung tâm thương mại VC có thêm 2 gian hàng trống. Hỏi người quản lý phải quyết định giá thuê mỗi gian hàng là bao nhiêu đồng một năm để doanh thu của Trung tâm thương mại VC từ tiền cho thuê gian hàng trong năm là lớn nhất ?

Đáp án đúng là: C

Câu hỏi:351679
Phương pháp giải

Giải bài toán bằng cách lập phương trình:

Gọi giá tiền mỗi gian hàng tăng lên \(x\) (triệu đồng) \(\left( {DK:\,\,x > 0} \right)\).

Dựa vào các giả thiết bài toán để biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

Từ đó lập phương trình. Giải phương trình, đối chiếu với điều kiện của ẩn rồi kết luận.

Giải chi tiết

Gọi giá tiền mỗi gian hàng tăng lên \(x\) (triệu đồng) \(\left( {DK:\,\,x > 0} \right)\).

Khi đó giá mỗi gian hàng sau khi tăng lên là \(100 + x\) (triệu đồng).

Cứ mỗi lần tăng 5% tiên thuê mỗi gian hàng (tăng \(5\% .100 = 5\) triệu đồng) thì có thêm 2 gian hàng trống nên khi tăng \(x\) triệu đồng thì có thêm \(\frac{{2x}}{5}\) gian hàng trống.

Khi đó số gian hàng được thuê sau khi tăng giá là \(100 - \frac{{2x}}{5}\) (gian).

Số tiền thu được là: \(\left( {100 + x} \right)\left( {100 - \frac{{2x}}{5}} \right)\)  (triệu đồng).

Yêu cầu bài toán trở thành tìm \(x\) để \(P = \left( {100 + x} \right)\left( {100 - \frac{{2x}}{5}} \right)\) đạt giá trị lớn nhất.

Ta có:

\(\begin{array}{l}P = \left( {100 + x} \right)\left( {100 - \frac{{2x}}{5}} \right) = 10000 - 40x + 100x - \frac{{2{x^2}}}{5}\\ =  - \frac{2}{5}\left( {{x^2} - 150x} \right) + 10000 =  - \frac{2}{5}\left( {{x^2} - 2.75x + {{75}^2}} \right) + \frac{2}{5}{.75^2} + 10000\\ =  - \frac{2}{5}{\left( {x - 75} \right)^2} + 12250\end{array}\)

Ta có \({\left( {x - 75} \right)^2} \ge 0 \Leftrightarrow  - \frac{2}{5}{\left( {x - 75} \right)^2} \le 0 \Leftrightarrow  - \frac{2}{5}{\left( {x - 75} \right)^2} + 12250 \le 12250\).

Dấu “=” xảy ra khi và chỉ khi \(x = 75\).

Vậy người quản lí phải cho thuê mỗi gian hàng với giá \(100 + 75 = 175\) triệu đồng thì doanh thu của Trung tâm thương mại VC trong năm là lớn nhất.

Đáp án cần chọn là: C

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com