Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \(\left( O \right)\) đường kính \(AB\) và điểm \(M\) bất kì thuộc đường tròn sao

Câu hỏi số 353803:
Vận dụng

Cho đường tròn \(\left( O \right)\) đường kính \(AB\) và điểm \(M\) bất kì thuộc đường tròn sao cho \(cung\,\,MA < cung\,\,MB\) \(\left( {M \ne A} \right)\). Kẻ tiếp tuyến tại \(A\) của đường tròn, tiếp tuyến này cắt tia \(BM\) ở \(N\). Tiếp tuyến của đường tròn tại \(M\) cắt \(AN\) ở \(D\).

a) Chứng minh bốn điểm \(A,\,\,D,\,\,M,\,\,O\) cùng thuộc một đường tròn.

b) Chứng minh \(OD\) song song với \(BM\).

c) Qua \(O\) kẻ đường thẳng vuông góc với \(AB\) và cắt đường thẳng \(BM\) tại \(I\). Gọi giao điểm của \(AI\) và \(BD\) là \(G\). Chứng minh \(N,\,\,G,\,\,O\) thẳng hàng.

Quảng cáo

Câu hỏi:353803
Phương pháp giải

a) Chứng minh tổng hai góc đối của tứ giác bằng \({180^0}\).

b) Chứng minh hai góc ở vị trí đồng vị bằng nhau.

c) Chứng minh \(G\) là trọng tâm tam giác \(ABN\).

Giải chi tiết

a) Ta có: \(OM \bot MD\) (tính chất tiếp tuyến) \( \Rightarrow \angle OMD = {90^0}\)

\(OA \bot AD\) (tính chất tiếp tuyến) \( \Rightarrow \angle OAD = {90^0}\)

Tứ giác \(OMDA\) có \(\angle OMD + \angle OAD = {90^0} + {90^0} = {180^0}\), mà hai góc này ở vị trí đối diện nên tứ giác \(OMDA\) nội tiếp hay bốn điểm \(A,D,M,O\) cùng thuộc một đường tròn.

b) Xét (O) Ta có: \(OD\) là tia phân giác trong góc \(\angle MOA\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow \angle MOD = \angle AOD = \frac{1}{2}\angle AOM\) (1)

Mà \(\angle MBA = \frac{1}{2}\angle MOA\) (góc nội tiếp và góc ở tâm cùng chắn cung \(MA\)) (2)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\angle AOD = \angle ABM\left( { = \frac{1}{2}\angle MOA} \right)\)

Mà hai góc này ở vị trí đồng vị nên \(OD//BM\) (đpcm).

c) Vì \(OI \bot AB,AN \bot AB \Rightarrow OI//AN\)

Mà \(O\) là trung điểm của \(AB\) \( \Rightarrow OI\) là đường trung bình của tam giác \(ABN\)

\( \Rightarrow I\) là trung điểm của \(BN\) \( \Rightarrow \)\(AI\) là trung tuyến của tam giác \(ABN\).

Lại có \(OD//BM\left( {cmt} \right)\), mà \(O\) là trung điểm của \(AB\)\( \Rightarrow OD\) là đường trung bình của tam giác \(ABN\)

\( \Rightarrow D\) là trung điểm của \(AN\) \( \Rightarrow \)\(BD\) là trung tuyến của tam giác \(ABN\).

Mà \(NO\) là trung tuyến của tam giác \(ABN\).

Mặt khác ta lại có: \(AI \cap BD = \left\{ G \right\}\)

Do đó \(AI,BD,NO\) đồng qui tại \(G\) là trọng tâm của tam giác \(ABN\).

Suy ra \(N,G,O\) thẳng hàng.

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com