Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

1) Vẽ đồ thị của hai hàm số \(y =  - \frac{1}{2}{x^2},\,\,\,y = 2x - 1\) trên cùng một mặt phẳng

Câu hỏi số 354788:
Vận dụng

1) Vẽ đồ thị của hai hàm số \(y =  - \frac{1}{2}{x^2},\,\,\,y = 2x - 1\) trên cùng một mặt phẳng tọa độ.

2) Tìm các tham số thực \(m\) để hai đường thẳng \(y = \left( {{m^2} + 1} \right)x + m\) và \(y = 2x - 1\) song song với nhau.

3) Tìm các số thực \(x\) để biểu thức \(M = \sqrt {3x - 5}  - \frac{1}{{\sqrt[3]{{{x^2} - 4}}}}\) xác định.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:354788
Phương pháp giải

1) Lập bảng giá trị, vẽ đồ thị của hai hàm số trên cùng hệ trục tọa độ.

2) Hai đường thẳng \(y = {a_1}x + {b_1}\) và \(y = {a_2}x + {b_2}\) là hai đường thẳng song song \( \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} \ne {b_2}\end{array} \right..\)

3) Biểu thức: \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0.\)

    Biểu thức: \(\frac{1}{{f\left( x \right)}}\) xác định \( \Leftrightarrow f\left( x \right) \ne 0.\) 

Giải chi tiết

1) Vẽ đồ thị của hai hàm số \(y =  - \frac{1}{2}{x^2},\,\,\,y = 2x - 1\) trên cùng một mặt phẳng tọa độ.

+) Vẽ đồ thị hàm số \(y =  - \frac{1}{2}{x^2}\)

Ta có bảng giá trị:

Vậy đồ thị hàm số \(y =  - \frac{1}{2}{x^2}\) là đường cong đi qua các điểm  \(\left( { - 4; - 8} \right),\left( { - 2; - 2} \right),\left( {0;0} \right),\left( {2; - 2} \right),\left( {4; - 8} \right)\) và nhận trục \(Oy\) làm trục đối xứng.

+) Vẽ đồ thị hàm số \(y = 2x - 1:\)

Ta có bảng giá trị:

Vậy đường thẳng \(y = 2x - 1\) là đường thẳng đi qua hai điểm: \(\left( {0; - 1} \right),\,\,\,\left( { - 2;\, - 5} \right).\)

2) Tìm các tham số thực \(m\) để hai đường thẳng \(y = \left( {{m^2} + 1} \right)x + m\)\(y = 2x - 1\) song song với nhau.

 Hai đường thẳng \(y = \left( {{m^2} + 1} \right)x + m\) và \(y = 2x - 1\) song song với nhau

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 1 = 2\\m \ne  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} = 1\\m \ne  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m =  - 1\end{array} \right.\\m \ne  - 1\end{array} \right. \Leftrightarrow m = 1.\)

Vậy \(m = 1\) thỏa mãn bài toán.

3) Tìm các số thực \(x\) để biểu thức \(M = \sqrt {3x - 5}  - \frac{1}{{\sqrt[3]{{{x^2} - 4}}}}\) xác định.

Biểu thức \(M\) đã cho xác định \( \Leftrightarrow \,\left\{ \begin{array}{l}3x - 5 \ge 0\\{x^2} - 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x \ge 5\\{x^2} \ne 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{5}{3}\\x \ne  \pm 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \frac{5}{3}\\x \ne 2\end{array} \right..\)

Vậy biểu thức \(M\) xác định khi và chỉ khi \(x \ge \frac{5}{3},\,\,\,x \ne 2.\)

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com