1) Vẽ đồ thị của hai hàm số \(y = - \frac{1}{2}{x^2},\,\,\,y = 2x - 1\) trên cùng một mặt phẳng
1) Vẽ đồ thị của hai hàm số \(y = - \frac{1}{2}{x^2},\,\,\,y = 2x - 1\) trên cùng một mặt phẳng tọa độ.
2) Tìm các tham số thực \(m\) để hai đường thẳng \(y = \left( {{m^2} + 1} \right)x + m\) và \(y = 2x - 1\) song song với nhau.
3) Tìm các số thực \(x\) để biểu thức \(M = \sqrt {3x - 5} - \frac{1}{{\sqrt[3]{{{x^2} - 4}}}}\) xác định.
Đáp án đúng là: A
Quảng cáo
1) Lập bảng giá trị, vẽ đồ thị của hai hàm số trên cùng hệ trục tọa độ.
2) Hai đường thẳng \(y = {a_1}x + {b_1}\) và \(y = {a_2}x + {b_2}\) là hai đường thẳng song song \( \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} \ne {b_2}\end{array} \right..\)
3) Biểu thức: \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0.\)
Biểu thức: \(\frac{1}{{f\left( x \right)}}\) xác định \( \Leftrightarrow f\left( x \right) \ne 0.\)
Đáp án cần chọn là: A
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










