Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của \(m\) nhỏ hơn \(2018\) để phương trình \(\dfrac{3}{{{{\sin }^2}x}} +

Câu hỏi số 356487:
Vận dụng cao

Có bao nhiêu giá trị nguyên của \(m\) nhỏ hơn \(2018\) để phương trình \(\dfrac{3}{{{{\sin }^2}x}} + 3{\tan ^2}x + \tan x + \cot x = m\) có nghiệm?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:356487
Phương pháp giải

- Sử dụng công thức \(\dfrac{1}{{{{\sin }^2}x}} = 1 + {\cot ^2}x\).

- \(t = \tan x + \cot x\,\,\left( {\left| t \right| \ge 2} \right) \Rightarrow {\tan ^2}x + {\cot ^2}x = {t^2} - 2\).

- Cô lập \(m\), lập BBT của vế còn lại và kết luận

Giải chi tiết

ĐK: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi  \Leftrightarrow x \ne \dfrac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

\(\begin{array}{l}\,\,\,\,\,\,\dfrac{3}{{{{\sin }^2}x}} + 3{\tan ^2}x + \tan x + \cot x = m\\ \Leftrightarrow 3\left( {1 + {{\cot }^2}x} \right) + 3{\tan ^2}x + \tan x + \cot x = m\\ \Leftrightarrow 3\left( {{{\tan }^2}x + {{\cot }^2}x} \right) + \tan x + \cot x + 3 = m\end{array}\)

Đặt \(t = \tan x + \cot x\,\,\left( {\left| t \right| \ge 2} \right) \Rightarrow {\tan ^2}x + {\cot ^2}x = {t^2} - 2\).

Phương trình trở thành: \(3\left( {{t^2} - 2} \right) + t + 3 = m \Leftrightarrow 3{t^2} + t - 3 = m\).

Yêu cầu bài toán: Tìm \(m\) để phương trình \(3{t^2} + t - 3 = m\) (*) có nghiệm thỏa mãn \(\left| t \right| \ge 2\).

Xét hàm số \(f\left( t \right) = 3{t^2} + t - 3\) ta có BBT:

Phương trình (*) có nghiệm \( \Leftrightarrow m \ge 7\).

Kết hợp điều kiện \(m\) nguyên, \(m < 2018 \Rightarrow \) Có \(2011\) giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Chọn D

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com