Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nghiệm âm lớn nhất của phương trình \(\sin x + \cos x = 1 - \dfrac{1}{2}\sin 2x\) là

Câu hỏi số 357793:
Vận dụng

Nghiệm âm lớn nhất của phương trình \(\sin x + \cos x = 1 - \dfrac{1}{2}\sin 2x\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:357793
Phương pháp giải

- Biến đổi phương trình về dạng phương trình đối xứng đối với sin và cos.

- Sử dụng phương pháp đặt ẩn phụ \(t = \sin x + \cos x\) để giải phương trình này

Giải chi tiết

Ta có : \(\sin x + \cos x = 1 - \dfrac{1}{2}\sin 2x \Leftrightarrow \sin x + \cos x = 1 - \sin x\cos x\)

Đặt \(\sin x + \cos x = t\,\,\,\left( { - \sqrt 2  \le t \le \sqrt 2 } \right)\) .

Khi đó phương trình trở thành:

\(t = 1 - \dfrac{{{t^2} - 1}}{2} = 0 \Leftrightarrow 2t + {t^2} - 1 - 2 = 0 \Leftrightarrow {t^2} + 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\,\left( {tm} \right)\\t =  - 3\,\,\left( {ktm} \right)\end{array} \right.\)

Suy ra \(\sin x + \cos x = 1 \Leftrightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) = 1 \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\)

\( \Rightarrow \sin x\cos x = \dfrac{{{t^2} - 1}}{2}\)\( \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi \\x + \dfrac{\pi }{4} = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{\pi }{2} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)

Do \(x\) là nghiệm âm lớn nhất nên:

+ TH1: \(k2\pi  < 0 \Leftrightarrow k < 0\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k =  - 1 \Rightarrow x =  - 2\pi \).

+ TH2: \(\dfrac{\pi }{2} + k2\pi  < 0 \Leftrightarrow k <  - \dfrac{1}{4}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k =  - 1 \Rightarrow x =  - \dfrac{{3\pi }}{2}\).

Trong hai nghiệm \( - 2\pi \) và \( - \dfrac{{3\pi }}{2}\) thì nghiệm âm lớn nhất là \( - \dfrac{{3\pi }}{2}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com