Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xét khối chóp tứ giác đều \(S.ABCD\), mặt phẳng chứa đường thẳng \(AB\) đi qua điểm \(C'\)

Câu hỏi số 363687:
Vận dụng cao

Xét khối chóp tứ giác đều \(S.ABCD\), mặt phẳng chứa đường thẳng \(AB\) đi qua điểm \(C'\) của cạnh \(SC\) chia khối chóp thành hai phần có thể tích bằng nhau. Tính tỉ số \(\dfrac{{SC'}}{{SC}}.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:363687
Giải chi tiết

Qua \(C'\) kẻ \(C'D'\parallel CD\,\,\left( {D' \in SD} \right)\), ta có: \(C'D'\parallel CD\parallel AB \Rightarrow D' \in \left( {ABC'} \right)\).

Đặt \(\dfrac{{SD'}}{{SD}} = \dfrac{{SC'}}{{SC}} = k\,\,\left( {CD\parallel C'D'} \right)\,\,\left( {0 < k < 1} \right)\).

\(\begin{array}{l} \Rightarrow \dfrac{{{V_{S.AC'B}}}}{{{V_{S.ACB}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SC'}}{{SC}}.\dfrac{{SB}}{{SB}} = k\\\,\,\,\,\,\,\dfrac{{{V_{S.AC'D'}}}}{{{V_{S.ACD}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SC'}}{{SC}}.\dfrac{{SD'}}{{SD}} = {k^2}\\ \Rightarrow {V_{S.ABC'D'}} = {V_{S.AC'B}} + {V_{S.AC'D'}} = k{S_{S.ACB}} + {k^2}{V_{S.ACD}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\left( {k + {k^2}} \right){V_{S.ABCD}}}}{2} = \dfrac{{{V_{S.ABCD}}}}{2}\\ \Rightarrow {k^2} + k - 1 = 0 \Leftrightarrow k = \dfrac{{\sqrt 5  - 1}}{2}\,\,\left( {Do\,\,k > 0} \right)\end{array}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com