Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right),\) hàm số \(y = f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có

Câu hỏi số 367335:
Vận dụng

Cho hàm số \(f\left( x \right),\) hàm số \(y = f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Bất phương trình \(f\left( x \right) < x + m\) (\(m\) là tham số thực) nghiệm đúng với mọi \(x \in \left( {0;\,\,2} \right)\) khi và chỉ khi:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:367335
Phương pháp giải

Dựa vào đồ thị hàm số \(y = f'\left( x \right),\)  xét các khoảng đơn điệu của hàm số \(y = f\left( x \right)\) và biện luận số nghiệm của bất phương trình.

Giải chi tiết

Ta có: \(f\left( x \right) < x + m\,\,\,\forall x \in \left( {0;\,\,2} \right) \Leftrightarrow m > f\left( x \right) - x\,\,\,\forall x \in \left( {0;\,\,2} \right)\,\,\,\,\,\left( 1 \right)\)

Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có: với mọi \(x \in \left( {0;\,\,2} \right) \Rightarrow f'\left( x \right) < 1.\)

Xét hàm số \(g\left( x \right) = f\left( x \right) - x\) trên khoảng \(\left( {0;\,\,2} \right)\) ta có:

\(g'\left( x \right) = f'\left( x \right) - 1 < 0\,\,\,\forall x \in \left( {0;\,\,\,2} \right).\)

\( \Rightarrow g\left( x \right)\) nghịch biến trên \(\left( {0;\,\,2} \right).\)

\( \Rightarrow \left( 1 \right) \Leftrightarrow m \ge g\left( 0 \right) = f\left( 0 \right).\)

Chọn  B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com