Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn ngẫu nhiên hai số khác nhau từ \(25\) số nguyên dương đầu tiên. Xác suất để chọn

Câu hỏi số 367336:
Vận dụng

Chọn ngẫu nhiên hai số khác nhau từ \(25\) số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:367336
Phương pháp giải

Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{{n_A}}}{{{n_\Omega }}}.\)

Giải chi tiết

Số cách để chọn được hai số trong \(25\) số nguyên dương đầu tiên là: \({n_\Omega } = C_{25}^2 = 300\) (cách chọn).

Gọi biến cố \(A:\) “Chọn được hai số có tổng là một số chẵn”.

Trong \(25\) số nguyên dương đầu tiên có \(13\) số lẻ và \(12\) số chẵn.

Khi đó ta chọn \(2\) số trong \(12\) số chẵn hoặc chọn \(2\) số trong \(13\) số lẻ.

\( \Rightarrow {n_A} = C_{12}^2 + C_{13}^2 = 144\) (cách chọn).

\( \Rightarrow P\left( A \right) = \frac{{{n_A}}}{{{n_\Omega }}} = \frac{{144}}{{300}} = \frac{{12}}{{25}}.\)

Chọn  C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com