Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\,\,y = \frac{{{x^2}}}{2}\) và đường

Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\,\,y = \frac{{{x^2}}}{2}\) và đường thẳng \(\left( d \right):\,\,y =  - mx + 3 - m\) (với \(m\) là tham số).

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Tìm tọa độ điểm \(M\) thuộc parabol \(\left( P \right),\) biết điểm \(M\) có hoành độ bằng \(4.\)

Đáp án đúng là: A

Câu hỏi:368116
Phương pháp giải

Thay hoành độ điểm \(M\) vào công thức \(y = \frac{1}{2}{x^2}\) để tìm tung độ của điểm \(M.\)

Giải chi tiết

Ta có \(M\left( {4;\,\,{y_M}} \right)\) thuộc \(\left( P \right):\,\,\,y = \frac{{{x^2}}}{2}\) nên thay \(x = 4\) vào công thức hàm số \(y = \frac{1}{2}{x^2}\) ta được:

\({y_M} = \frac{1}{2}{.4^2} = 8 \Rightarrow M\left( {4;\,\,8} \right).\)

Vậy \(M\left( {4;\,\,8} \right).\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

Chứng minh đường thẳng \(\left( d \right)\) luôn cắt parabol \(\left( P \right)\) tại hai điểm phân biệt \(A,\,\,B.\) Gọi \({x_1},\,\,{x_2}\) lần lượt là hoành hoành độ của hai điểm \(A,\,\,B.\) Tìm \(m\) để \(x_1^2 + x_2^2 = 2{x_1}{x_2} + 20.\)

Đáp án đúng là: D

Câu hỏi:368117
Phương pháp giải

Xét phương trình hoành độ giao điểm \(\left( * \right)\)  của hai đồ thị hàm số.

+) Đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\,\,\,\left( {\Delta ' > 0} \right).\)

+) Sử dụng định lý Vi-et và hệ thức bài cho để tìm \(m.\) Đối chiếu với điều kiện rồi kết luận.

Giải chi tiết

Phương trình hoành độ giao điểm của hai đồ thị hàm số là:

\(\frac{{{x^2}}}{2} =  - mx + 3 - m \Leftrightarrow {x^2} + 2mx + 2m - 6 = 0\,\,\,\,\left( * \right)\)

Đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - 2m + 6 > 0\, \Leftrightarrow {m^2} - 2m + 1 + 5 > 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 5 > 0\,\,\,\forall m\)

\( \Rightarrow \) Đường thẳng \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};\,\,{y_1}} \right),\,\,\,B\left( {{x_2};\,\,{y_2}} \right).\)

Áp dụng định lý Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2m\\{x_1}{x_2} = 2m - 6\end{array} \right..\)

Theo đề bài ta có: \(x_1^2 + x_2^2 = 2{x_1}{x_2} + 20\)

\(\begin{array}{l} \Leftrightarrow x_1^2 + x_2^2 + 2{x_1}{x_2} - 4{x_1}{x_2} - 20 = 0\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} - 20 = 0\\ \Leftrightarrow {\left( { - 2m} \right)^2} - 4\left( {2m - 6} \right) - 20 = 0\\ \Leftrightarrow 4{m^2} - 8m + 24 - 20 = 0\\ \Leftrightarrow 4{m^2} - 8m + 4 = 0\\ \Leftrightarrow {m^2} - 2m + 1 = 0\\ \Leftrightarrow {\left( {m - 1} \right)^2} = 0\\ \Leftrightarrow m - 1 = 0\\ \Leftrightarrow m = 1.\end{array}\)

Vậy \(m = 1\) thỏa mãn bài toán.

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com