Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\,\,y = \frac{{{x^2}}}{2}\) và đường
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\,\,y = \frac{{{x^2}}}{2}\) và đường thẳng \(\left( d \right):\,\,y = - mx + 3 - m\) (với \(m\) là tham số).
Trả lời cho các câu 1, 2 dưới đây:
Tìm tọa độ điểm \(M\) thuộc parabol \(\left( P \right),\) biết điểm \(M\) có hoành độ bằng \(4.\)
Đáp án đúng là: A
Thay hoành độ điểm \(M\) vào công thức \(y = \frac{1}{2}{x^2}\) để tìm tung độ của điểm \(M.\)
Đáp án cần chọn là: A
Chứng minh đường thẳng \(\left( d \right)\) luôn cắt parabol \(\left( P \right)\) tại hai điểm phân biệt \(A,\,\,B.\) Gọi \({x_1},\,\,{x_2}\) lần lượt là hoành hoành độ của hai điểm \(A,\,\,B.\) Tìm \(m\) để \(x_1^2 + x_2^2 = 2{x_1}{x_2} + 20.\)
Đáp án đúng là: D
Xét phương trình hoành độ giao điểm \(\left( * \right)\) của hai đồ thị hàm số.
+) Đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0\,\,\,\left( {\Delta ' > 0} \right).\)
+) Sử dụng định lý Vi-et và hệ thức bài cho để tìm \(m.\) Đối chiếu với điều kiện rồi kết luận.
Đáp án cần chọn là: D
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










