Cho \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\,\,y = - x + m\) (\(x\)
Cho \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\,\,y = - x + m\) (\(x\) là ẩn, \(m\) là tham số).
Trả lời cho các câu 1, 2 dưới đây:
Tìm tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) khi \(m = 4.\)
Đáp án đúng là: A
Thay \(m = 4\) và phương trình hoành độ giao điểm của hai đồ thị hàm số.
Giải phương trình rồi kết luận.
Đáp án cần chọn là: A
Tìm tất cả các giá trị của \(m\) để đường thẳng \(\left( d \right)\) cắt parabol \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};\,\,{y_1}} \right),\,\,B\left( {{x_2},\,\,{y_2}} \right)\) thỏa mãn \({x_1}{x_2} + {y_1}{y_2} = 5.\)
Đáp án đúng là: C
Đường thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm \( \Leftrightarrow \) phương trình hoành độ giao điểm có hai nghiệm phân biệt
\( \Leftrightarrow \Delta > 0.\)
Áp dụng định lý Vi-et và hệ thức bài cho để tìm \(m.\)
Đáp án cần chọn là: C
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










