Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Cho phương trình \({x^2} - 2mx + 4m - 4 = 0\,\,(1)\) (\(x\) là ẩn số, \(m\) là tham số).

a) Giải phương trình (1) khi \(m = 1.\)

b) Xác định các giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\)  thỏa mãn điều kiện \(x_1^2 + ({x_1} + {x_2}){x_2} = 12\).

Đáp án đúng là: C

Câu hỏi:369432
Phương pháp giải

a) Thay \(m = 1\) vào phương trình, giải phương trình bằng phương pháp đưa về phương trình tích.

b) Tìm điều kiện \(\Delta ' > 0\) để phương trình có 2 nghiệm phân biệt rồi biến đổi điều kiện bài toán về tổng và tích 2 nghiệm và áp dụng hệ thức Vi-et và hệ thức bài cho để tìm \(m.\) 

Đối chiếu với điều kiện của \(m\) rồi kết luận.

Giải chi tiết

a) Giải phương trình (1) khi \(m = 1.\)

Với \(m = 1\) ta có phương trình  \(\left( 1 \right) \Leftrightarrow {x^2} - 2x = 0 \Leftrightarrow x\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\)

Vậy với \(m = 1\) thì phương trình có tập nghiệm \(S = \left\{ {0;\,\,2} \right\}.\)

b) Xác định các giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\)  thỏa mãn điều kiện \(x_1^2 + ({x_1} + {x_2}){x_2} = 12\)

\({x^2} - 2mx + 4m - 4 = 0\,\,\,\,\,\,\left( 1 \right)\)

Có: \(\Delta ' = {m^2} - \left( {4m - 4} \right) = {m^2} - 4m + 4 = {\left( {m - 2} \right)^2} \ge 0\,\,\,\,\,\,\,\forall m\)

Để phương trình (1) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thì \(\Delta ' > 0 \Leftrightarrow m \ne 2\)

Với \(m \ne 2\), theo hệ thức Vi-et ta có:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = 4m - 4\end{array} \right.\,\,(*)\)

Theo đề bài ta có: \(x_1^2 + \left( {{x_1} + {x_2}} \right){x_2} = 12\)

 \(\begin{array}{l} \Leftrightarrow x_1^2 + {x_2}^2 + {x_1}{x_2} = 12\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} + {x_1}{x_2} = 12\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2} = 12\\ \Leftrightarrow {\left( {2m} \right)^2} - \left( {4m - 4} \right) = 12\\ \Leftrightarrow 4{m^2} - 4m - 8 = 0\\ \Leftrightarrow 4\left( {{m^2} - m - 2} \right) = 0\\ \Leftrightarrow 4\left( {m - 2} \right)\left( {m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 2 = 0\\m + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\,\,\left( {ktm} \right)\\m =  - 1\,\,\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(m =  - 1\) là giá trị cần tìm.

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng

Bài toán có nội dung thực tế

Cho một thửa ruộng hình chữ nhật, biết rằng nếu chiều rộng tăng thêm \(2m\), chiều dài giảm đi \(2m\) thì diện tích thửa ruộng đó tăng thêm \(30{m^2}\); và nếu chiều rộng giảm đi \(2m\), chiều dài tăng thêm \(5m\) thì diện tích thửa ruộng giảm đi \(20{m^2}\). Tính diện tích thửa ruộng trên.

Đáp án đúng là: D

Câu hỏi:369433
Phương pháp giải

Gọi chiều rộng hình chữ nhật là \(x\,\,\left( m \right)\,\,\,\left( {x > 2} \right)\)

        chiều dài hình chữ nhật là \(y\,\,\left( m \right)\,\,\,\left( {y > x > 2} \right).\)

Dựa vào các giả thiết của bài toán để lập hệ phương trình.

Giải hệ phương trình rồi đối chiếu với điều kiện sau đó kết luận.

Giải chi tiết

Gọi chiều rộng hình chữ nhật là \(x\,\,\left( m \right)\,\,\,\left( {x > 2} \right)\)

        chiều dài hình chữ nhật là \(y\,\,\left( m \right)\,\,\,\left( {y > x > 2} \right).\)

Diện tích thửa ruộng ban đầu là \(xy\,\,\,\,\left( {{m^2}} \right).\)

Khi chiều rộng tăng thêm \(2m\), chiều dài giảm đi \(2m\) thì diện tích thửa ruộng tăng thêm \(30{m^2}\) nên ta có:

\(\left( {x + 2} \right)\left( {y - 2} \right) = xy + 30 \Leftrightarrow  - 2x + 2y = 34\,\,\,\,\,\,\left( 1 \right)\)

Khi chiều rộng giảm đi \(2m\), chiều dài tăng thêm \(5m\) thì diện tích thửa ruộng giảm đi \(20{m^2}\) nên ta có \(\left( {x - 2} \right)\left( {y + 5} \right) = xy - 20 \Leftrightarrow 5x - 2y =  - 10\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l} - 2x + 2y = 34\\5x - 2y =  - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - x + y = 17\\3x = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 25\,\,\,\,\left( {tm} \right)\\x = 8\,\,\,\,\,\,\,\,\left( {tm} \right)\end{array} \right.\)

Diện tích thửa ruộng ban đầu là \(25.8 = 200\,\,{m^2}.\)

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com