Cho mặt cầu \(S(I;R)\) và mặt phẳng \((P)\) cách \(I\) một khoảng bằng \(\dfrac{R}{2}\). Khi đó
Cho mặt cầu \(S(I;R)\) và mặt phẳng \((P)\) cách \(I\) một khoảng bằng \(\dfrac{R}{2}\). Khi đó thiết diện của \((P)\) và \(\left( S \right)\) là một đường tròn có bán kính bằng:
Đáp án đúng là: B
Quảng cáo
Gọi \(R\) là bán kính mặt cầu\(\left( S \right),\)\(d = d\left( {I;\,\,\left( P \right)} \right)\) là khoảng cách từ tâm \(I\) đến mặt phẳng \(\left( P \right)\) và \(r\) là bán kính đường tròn giao tuyến mà \(\left( P \right)\) cắt \(\left( S \right).\) Khi đó ta có: \(r = \sqrt {{R^2} - {d^2}} .\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













