Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị nhỏ nhất của hàm số \(y = \dfrac{1}{{\sin x + \cos x}}\) trên khoảng \(\left( {0;\dfrac{\pi

Câu hỏi số 373759:
Vận dụng

Giá trị nhỏ nhất của hàm số \(y = \dfrac{1}{{\sin x + \cos x}}\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:373759
Phương pháp giải

Đánh giá GTNN của hàm số, sử dụng tính chất của hàm số lượng giác.

Giải chi tiết

Ta có: \(y = \dfrac{1}{{\sin x + \cos x}}\)\( = \dfrac{1}{{\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right)}}\).

Có \(0 < x < \dfrac{\pi }{4} \Rightarrow \dfrac{\pi }{4} < x + \dfrac{\pi }{4} < \dfrac{{3\pi }}{4}\) nên \(\dfrac{{\sqrt 2 }}{2} < \sin \left( {x + \dfrac{\pi }{4}} \right) \le 1,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\).

Do đó \(1 < \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) \le \sqrt 2 \) \( \Rightarrow 1 > \dfrac{1}{{\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right)}} \ge \dfrac{1}{{\sqrt 2 }}\) hay \(\dfrac{1}{{\sqrt 2 }} \le y < 1\).

Vậy \(\mathop {\min }\limits_{\left( {0;\dfrac{\pi }{2}} \right)} y = \dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\), dấu “=” xảy ra khi \(x = \dfrac{\pi }{4}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com