Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hệ số của \({x^3}\) trong khai triển nhị thức Niu – Tơn của \({\left( {2 + x} \right)^{10}}\)

Câu hỏi số 373914:
Thông hiểu

Hệ số của \({x^3}\) trong khai triển nhị thức Niu – Tơn của \({\left( {2 + x} \right)^{10}}\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:373914
Phương pháp giải

Sử dụng khai triển nhị thức Niu – tơn: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \).

Giải chi tiết

Ta có: \({\left( {2 + x} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k{2^{10 - k}}{x^k}} \).

Hệ số của \({x^3}\) ứng với \(k = 3\).

Vậy hệ số của \({x^3}\) trong khai triển trên là: \(C_{10}^3{.2^7}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com