Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp trong đường tròn \(\left( {O;\,\,R} \right),\,\,\left( {AB

Câu hỏi số 374428:
Vận dụng

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp trong đường tròn \(\left( {O;\,\,R} \right),\,\,\left( {AB < AC} \right).\) Ba đường cao \(AE,\,\,BF\) và \(CK\) của tam giác \(ABC\) cắt nhau tại \(H.\) Vẽ đường kính \(AD\) của đường tròn \(\left( {O;\,\,R} \right).\)

a) Chứng minh tứ giác \(AKHF\) nội tiếp.

b) Chứng minh \(DC//BF.\)

c) Chứng minh \(AB.AC = AE.AD.\)

d) Cho \(BC = \frac{{4\sqrt 2 R}}{3}.\) Tính theo \(R\) diện tích hình tròn ngoại tiếp tam giác \(HKF.\)

Quảng cáo

Câu hỏi:374428
Phương pháp giải

a) Sử dụng dấu hiệu nhận biết để chứng minh tứ giác nội tiếp.

b) Chứng minh song song theo định lý từ vuông góc đến song song.

c) Chứng minh cặp tam giác đồng dạng tương ứng rồi suy ra đẳng thức.

d) Công thức tính diện tích hình tròn bán kính \(r:\,\,S = \pi {r^2}.\)

Giải chi tiết

a) Chứng minh tứ giác \(AKHF\) nội tiếp.

Ta có: \(\left\{ \begin{array}{l}\angle AKH = {90^{0\,}}\,\,\,\left( {CK \bot AB = \left\{ K \right\}} \right)\\\angle AFH = {90^0}\,\,\,\,\,\left( {BF \bot AC = \left\{ K \right\}} \right)\end{array} \right.\)

Xét tứ giác \(AKHF\) ta có: \(\angle AKH + \angle AFH = {90^0} + {90^0} = {180^0}\)

Mà hai góc này là hai góc đối nhau trong tứ giác

\( \Rightarrow AKHF\) là tứ giác nội tiếp. (dhnb).

b) Chứng minh \(DC//BF.\)

Ta có: \(BF \bot AC\) (do \(BF\) là đường cao của \(\Delta ABC\))

Lại có: \(\angle ACD = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

\( \Rightarrow CD \bot AC.\)

\( \Rightarrow CD//BF\,\,\left( { \bot AC} \right)\) (từ vuông góc đến song song).

c) Chứng minh \(AB.AC = AE.AD.\)

Xét \(\Delta ABE\) và \(\Delta ADC\) ta có:

\(\angle ABE = \angle ADC\) (hai góc nội tiếp cùng chắn cung \(AC\))

\(\begin{array}{l}\angle AEB = \angle ACD = {90^0}\\ \Rightarrow \Delta ABE \sim \Delta ADC\,\,\left( {g - g} \right)\\ \Rightarrow \frac{{AB}}{{AD}} = \frac{{AE}}{{AC}} \Leftrightarrow AB.AC = AD.AE\,\,\,\left( {dpcm} \right).\end{array}\)

d) Cho \(BC = \frac{{4\sqrt 2 R}}{3}.\) Tính theo \(R\) diện tích hình tròn ngoại tiếp tam giác \(HKF.\)

Theo câu a) ta có tứ giác \(AKHF\) là tứ giác nội tiếp.

\( \Rightarrow \) đường tròn ngoại tiếp tam giác \(HKF\) là đường tròn \(\left( C \right)\)  đi qua các điểm \(A,\,\,K,\,\,H,\,\,F.\)

Lại có \(\Delta AKH\) là tam giác vuông tại \(K\) nội tiếp đường tròn \(\left( C \right)\)

\( \Rightarrow AH\) là đường kính của đường tròn \(\left( C \right).\)

Gọi \(I\) là trung điểm của \(BC\) ta có: \(OI \bot BC = \left\{ I \right\}\) (mối liên hệ giữa đường kính và dây cung).

Mà \(AE \bot BC\,\,\left( {gt} \right) \Rightarrow OI//AE\,\,hay\,\,\,OI//AH\) (từ vuông góc đến song song).

Lại có \(O\) là trung điểm của \(AD.\)

\( \Rightarrow OI\) là đường trung bình của \(\Delta ADH.\)

\( \Rightarrow OI = \frac{1}{2}AH \Leftrightarrow AH = 2OI.\)

Áp dụng định lý Pitago trong \(\Delta IOC\) vuông tại \(I\) ta có:

\(\begin{array}{l}OI = \sqrt {O{C^2} - I{C^2}}  = \sqrt {O{C^2} - \frac{{B{C^2}}}{4}}  = \sqrt {{R^2} - \frac{{{{\left( {4\sqrt 2 R} \right)}^2}}}{{4.9}}}  = \frac{R}{3}.\\ \Rightarrow AH = 2OI = 2.\frac{R}{3} = \frac{{2R}}{3}.\end{array}\)

Khi đó diện tích hình tròn ngoại tiếp tam giác \(HKF\) là: \(S = \pi .\frac{{A{H^2}}}{4} = \pi .{\left( {\frac{{2R}}{3}} \right)^2}.\frac{1}{4} = \frac{{\pi {R^2}}}{9}.\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com