Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(M \in \Delta :2x - y + 1 = 0\) và hai điểm \(O\left( {0;0} \right);\,A\left( {2;1} \right)\). Tìm \(M\)

Câu hỏi số 374983:
Vận dụng

Cho \(M \in \Delta :2x - y + 1 = 0\) và hai điểm \(O\left( {0;0} \right);\,A\left( {2;1} \right)\). Tìm \(M\) để \(OM + MA\) nhỏ nhất

Đáp án đúng là: C

Quảng cáo

Câu hỏi:374983
Phương pháp giải

Bước 1: Chứng minh \(O,A\) nằm cùng phía so với \(\Delta \)

Bước 2: Tìm \(O'\) đối xứng \(O\) qua \(\Delta \)

Bước 3: Nhận xét để \(OM + MA\) nhỏ nhất thì \(O'AM\) thẳng hàng và tìm \(M = OA' \cap \Delta \)

Giải chi tiết

\(\Delta \left( O \right).\Delta \left( A \right) = \left( {2.0 - 0 + 1} \right).\left( {2.2 - 1 + 1} \right) = 1.4 > 0\)

Suy ra \(O,A\) cùng phía so với \(\Delta \)

\(d\left\{ \begin{array}{l}qua\,O\left( {0;0} \right)\\ \bot \Delta \end{array} \right. \Rightarrow d:x + 2y = 0\)\( \Rightarrow H = d \cap \Delta  \Rightarrow H\left( {\frac{{ - 2}}{5};\frac{1}{5}} \right)\)

\(H\) là trung điểm \(OO' \Rightarrow \left\{ \begin{array}{l}{x_{O'}} = \frac{{ - 2}}{5}.2 - 0 = \frac{{ - 4}}{5}\\{y_{O'}} = \frac{1}{5}.2 - 0 = \frac{2}{5}\end{array} \right. \Rightarrow O'\left( {\frac{{ - 4}}{5};\frac{2}{5}} \right)\)

\(\left( {OM + MA} \right)\min  = \left( {O'M + MA} \right)\min \)

\( \Rightarrow O'MA\) thẳng hàng \( \Leftrightarrow O'A \cap \Delta  = M\)

\(\begin{array}{l}O'A\left\{ \begin{array}{l}qua\,\,A\left( {2;1} \right)\\VTPT\,\overrightarrow n  \bot \overrightarrow {O'A}  = \left( {\frac{{14}}{5};\frac{3}{5}} \right)\end{array} \right.\\ \Rightarrow 3\left( {x - 2} \right) - 14\left( {y - 1} \right) = 0 \Leftrightarrow 3x - 14y + 8 = 0\end{array}\)

\(M = O'A \cap \Delta  \Rightarrow M\left\{ \begin{array}{l}3x - 14y + 8 = 0\\2x - y + 1 = 0\end{array} \right. \Rightarrow M\left( {\frac{{ - 6}}{{25}};\frac{{13}}{{25}}} \right)\)

Chọn  C.

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com