Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^4} - 2{x^2}\) có đồ thị \(\left( S \right)\). Gọi \(A,\,\,B,\,\,C\) là các điểm

Câu hỏi số 378314:
Vận dụng

Cho hàm số \(y = {x^4} - 2{x^2}\) có đồ thị \(\left( S \right)\). Gọi \(A,\,\,B,\,\,C\) là các điểm phân biệt trên \(\left( S \right)\) có tiếp tuyến với \(\left( S \right)\) tại các điểm đó song song với nhau. Biết \(A,\,\,B,\,\,C\) cùng nằm trên một parabol \(\left( P \right)\) có đỉnh \(I\left( {\frac{1}{6};{y_0}} \right)\). Tìm \({y_0}\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:378314
Phương pháp giải

Tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là \(k = y'\left( {{x_0}} \right)\).

Giải chi tiết

\(y = {x^4} - 2{x^2} \Rightarrow y' = 4{x^3} - 4x\).

Giả sử các tiếp tuyến tại \(A,\,\,B,\,\,C\) có hệ số góc cùng bằng \(k \Rightarrow 4{x^3} - 4x = k\,\,\,\left( 1 \right)\).

Ta có: \({x^4} - 2{x^2} = \frac{1}{4}x\left( {4{x^3} - 4x} \right) - {x^2} = \frac{1}{4}xk - {x^2}\).

Do đó ba điểm \(A,\,\,B,\,\,C\) thuộc đồ thị hàm số \(y =  - {x^2} + \frac{1}{4}kx\,\,\left( P \right)\).

Theo giả thiết \(\left( P \right)\) có đỉnh \(I\left( {\frac{1}{6};{y_0}} \right)\) nên \(\frac{{ - \frac{1}{4}k}}{{2\left( { - 1} \right)}} = \frac{1}{6} \Leftrightarrow  - \frac{1}{4}k =  - \frac{1}{3} \Leftrightarrow k = \frac{4}{3}\).

Khi đó \(\left( P \right):\,\,y =  - {x^2} + \frac{1}{3}x\).

Vậy \({y_0} = y\left( {\frac{1}{6}} \right) =  - {\left( {\frac{1}{6}} \right)^2} + \frac{1}{3}.\frac{1}{6} = \frac{1}{{36}}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com