Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(x\) và \(y\) là các số thực dương thỏa mãn điều kiện \({x^3} + xy\left( {2x + y} \right) =

Câu hỏi số 378641:
Vận dụng cao

Cho \(x\) và \(y\) là các số thực dương thỏa mãn điều kiện \({x^3} + xy\left( {2x + y} \right) = 2{y^3} + 2xy\left( {x + 2y} \right)\). Điều kiện của tham số \(m\) để phương trình \(\log _3^2\left( {\dfrac{{{x^2}}}{{2y}}} \right) - m{\log _3}\left( {\dfrac{{4{y^2}}}{x}} \right) + 2m - 4 = 0\) có nghiệm thuộc đoạn \(\left[ {1;3} \right]\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:378641
Phương pháp giải

Biến đổi điều kiện đề bài để tìm được mối quan hệ \(x = 2y.\)

Từ đó thay vào phương trình để tìm \(m.\)

Đặt ẩn phụ \({\log _3}x = t \Rightarrow t \in \left[ {0;1} \right]\)

Giải chi tiết

Ta có

\(\begin{array}{l}{x^3} + xy\left( {2x + y} \right) = 2{y^3} + 2xy\left( {x + 2y} \right)\\ \Leftrightarrow {x^3} + 2{x^2}y + x{y^2} = 2{y^3} + 2{x^2}y + 4x{y^2}\\ \Leftrightarrow {x^3} - 3x{y^2} - 2{y^3} = 0\\ \Leftrightarrow \left( {{x^3} - x{y^2}} \right) - \left( {2x{y^2} + 2{y^3}} \right) = 0\\ \Leftrightarrow x\left( {{x^2} - {y^2}} \right) - 2{y^2}\left( {x + y} \right) = 0\\ \Leftrightarrow x\left( {x - y} \right)\left( {x + y} \right) - 2{y^2}\left( {x + y} \right) = 0\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} - xy - 2{y^2}} \right) = 0\\ \Leftrightarrow \left( {x + y} \right)\left( {{x^2} - {y^2} - xy - {y^2}} \right) = 0\\ \Leftrightarrow \left( {x + y} \right)\left[ {\left( {x - y} \right)\left( {x + y} \right) - y\left( {x + y} \right)} \right] = 0\\ \Leftrightarrow {\left( {x + y} \right)^2}\left( {x - 2y} \right) = 0\end{array}\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 2y\\x =  - y\end{array} \right.\)

Mà \(x;y\) là các số thực dương nên \(x = 2y.\)

Thay vào phương trình ta được:

\(\begin{array}{l}\log _3^2\left( {\dfrac{{{x^2}}}{x}} \right) - m{\log _3}\left( {\dfrac{{{x^2}}}{x}} \right) + 2m - 4 = 0\\ \Leftrightarrow \log _3^2x - m{\log _3}x + 2m - 4 = 0\end{array}\)

Đặt:

 \(\begin{array}{l}{\log _3}x = t \Rightarrow {t^2} - mt + 2m - 4 = 0\\ \Leftrightarrow \left( {t - 2} \right)\left( {t + 2} \right) - m\left( {t - 2} \right) = 0\\ \Leftrightarrow \left( {t - 2} \right)\left( {t + 2 - m} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = m - 2\end{array} \right.\end{array}\)

Vì \(x \in \left[ {1;3} \right] \Rightarrow t \in \left[ {0;1} \right]\) nên \(0 \le m - 2 \le 1 \Leftrightarrow 2 \le m \le 3.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com