Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Gọi \(\left( H \right)\) là hình trụ có hai đường

Câu hỏi số 379062:
Thông hiểu

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Gọi \(\left( H \right)\) là hình trụ có hai đường tròn đáy lần lượt là đường tròn ngoại tiếp các hình vuông \(ABCD.A'B'C'D'\). Diện tích toàn phần của hình trụ \(\left( H \right)\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:379062
Phương pháp giải

Diện tích toàn phần của hình trụ có bán kính đáy \(R\), chiều cao \(h\) là: \({S_{tp}} = 2\pi R\left( {R + h} \right)\).

Giải chi tiết

Gọi \(O = AC \cap BD\).

Vì \(ABCD\) là hình vuông cạnh \(a \Rightarrow AC = a\sqrt 2 \).

\( \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\).

Do đó hình trụ có bán kính đáy \(R = OA = \frac{{a\sqrt 2 }}{2}\), chiều cao \(h = AA' = a\).

Diện tích toàn phần của hình trụ \(\left( H \right)\) là:

\(\begin{array}{l}{S_{tp}} = 2\pi R\left( {h + R} \right) = 2\pi .\frac{{a\sqrt 2 }}{2}\left( {a + \frac{{a\sqrt 2 }}{2}} \right)\\\,\,\,\,\,\,\, = \frac{{\sqrt 2 \left( {2 + \sqrt 2 } \right)\pi {a^2}}}{2} = \left( {1 + \sqrt 2 } \right)\pi {a^2}\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com