Cho \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\) và \(a,b,c\) là \(3\) số khác \(0\). Chứng minh :
Cho \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\) và \(a,b,c\) là \(3\) số khác \(0\).
Chứng minh : \(\frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + \frac{1}{{{c^3}}} = \frac{3}{{abc}}\).
Quảng cáo
Áp dụng hằng đẳng thức \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2ac + 2bc\) và \({\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










