Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình vuông \(ABCD\) cạnh bằng \(a,\) tâm \(O.\) Tính \(\left| {\overrightarrow {AO}  + \overrightarrow

Câu hỏi số 379473:
Vận dụng

Cho hình vuông \(ABCD\) cạnh bằng \(a,\) tâm \(O.\) Tính \(\left| {\overrightarrow {AO}  + \overrightarrow {AB} } \right|.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:379473
Phương pháp giải

Tính \(\overrightarrow {AO}  + \overrightarrow {AB} \) và suy ra độ dài.

Giải chi tiết

Gọi \(E\) là trung điểm của \(OB\).

Khi đó \(\overrightarrow {AO}  + \overrightarrow {AB}  = 2\overrightarrow {AE} \).

\(\Delta ABC\) vuông cân tại \(B\) có \(AB = BC = a\) nên \(AC = \sqrt {A{B^2} + B{C^2}} \) \( = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\( \Rightarrow AO = OB = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\) \( \Rightarrow OE = \frac{1}{2}OB = \frac{1}{2}.\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\)

Tam giác \(AOE\) vuông tại \(O\) có \(AE = \sqrt {A{O^2} + O{E^2}} \) \( = \sqrt {\frac{{2{a^2}}}{4} + \frac{{2{a^2}}}{{16}}}  = \frac{{a\sqrt {10} }}{4}\)

Vậy \(\left| {\overrightarrow {AO}  + \overrightarrow {AB} } \right| = 2\left| {\overrightarrow {AE} } \right| = 2AE\)\( = 2.\frac{{a\sqrt {10} }}{4} = \frac{{a\sqrt {10} }}{2}\)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com