Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp chữ nhật ABCD. A’B’C’D’ thay đổi nhưng luôn nội tiếp một hình cầu cố

Câu hỏi số 379548:
Vận dụng cao

Cho hình hộp chữ nhật ABCD. A’B’C’D’ thay đổi nhưng luôn nội tiếp một hình cầu cố định có bán kính R . Biết AB =2AD =2x (x > 0) . Tìm x để thể tích khối hộp đã cho đạt giá trị lớn nhất

Đáp án đúng là: C

Quảng cáo

Câu hỏi:379548
Phương pháp giải

- Xác định tâm mặt cầu ngoại tiếp khối hộp.

- Sử dụng định lí Pytago tính chiều cao của khối hộp theo \(R\).

- Tính thể tích khối hộp, sử dụng công thức \(V = AB.AD.AA'\), sau đo sử dụng phương pháp hàm số để tìm giá trị lớn nhất của hàm số.

Giải chi tiết

Gọi \(O\) là tâm hình hộp chữ nhật. Khi đó \(O\) là tâm mặt cầu ngoại tiếp hình hộp \(ABCD.A'B'C'D'\) và bán kính mặt cầu là \(R = OA\).

Gọi \(I,\,\,I'\) lần lượt là tâm của hai đáy \(ABCD\) và \(A'B'C'D'\).

\( \Rightarrow II' \bot \left( {ABCD} \right)\) và \(O\) là trung điểm của \(II'\).

Áp dụng định lí Pytago trong tam giác vuông \(ABC\) ta có:

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {4{x^2} + {x^2}}  = x\sqrt 5 \).

\( \Rightarrow AI = \dfrac{1}{2}AC = \dfrac{{x\sqrt 5 }}{2}\).

Áp dụng định Pytago trong tam giác vuông \(OAI\) có:

\(OI = \sqrt {O{A^2} - A{I^2}}  = \sqrt {{R^2} - \dfrac{{5{x^2}}}{4}} \).

\( \Rightarrow II' = 2OI = 2\sqrt {{R^2} - \dfrac{{5{x^2}}}{4}}  = \sqrt {4{R^2} - 5{x^2}}  = AA'\).

Do đó thể tích khối hộp chữ nhật là:

\({V_{ABCD.A'B'C'D'}} = AA'.AB.AD = \sqrt {4{R^2} - 5{x^2}} .2{x^2}\).

Xét hàm số \(f\left( x \right) = \sqrt {4{R^2} - 5{x^2}} .2{x^2}\,\,\left( {0 < x \le \dfrac{2}{{\sqrt 5 }}R} \right)\) ta có:

\(\begin{array}{l}f'\left( x \right) = \dfrac{{ - 10x}}{{2\sqrt {4{R^2} - 5{x^2}} }}.2{x^2} + \sqrt {4{R^2} - 5{x^2}} .4x\\f'\left( x \right) = \dfrac{{ - 10{x^3} + \left( {4{R^2} - 5{x^2}} \right).4x}}{{\sqrt {4{R^2} - 5{x^2}} }}\\f'\left( x \right) = \dfrac{{16{R^2}x - 30{x^3}}}{{\sqrt {4{R^2} - 5{x^2}} }}\end{array}\)

Khi đó

\(\begin{array}{l}f'\left( x \right) = 0 \Leftrightarrow 16{R^2}x - 30{x^3} = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 2x\left( {8{R^2} - 15{x^2}} \right) = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\,\left( {loai} \right)\\x = \dfrac{{2\sqrt {30} R}}{{15}}\,\,\,\left( {tm} \right)\\x =  - \dfrac{{2\sqrt {30} R}}{{15}}\,\,\left( {loai} \right)\end{array} \right.\end{array}\)

Ta có BBT:

Từ BBT suy ra \(\mathop {\max }\limits_{\left( {0;\dfrac{{2R}}{{\sqrt 5 }}} \right]} f\left( x \right) = f\left( {\dfrac{{2\sqrt {30} R}}{{15}}} \right) \Leftrightarrow x = \dfrac{{2\sqrt {30} R}}{{15}}\).

Vậy thể tích khối hộp đã cho đạt giá trị lớn nhất khi \(x = \dfrac{{2\sqrt {30} R}}{{15}}\).

Chọn C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com