Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGTD Bách Khoa và TN THPT - Ngày 10-11/01/2026
↪ ĐGTD Bách Khoa (TSA) - Trạm 5 ↪ TN THPT - Trạm 2
Giỏ hàng của tôi

Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của biểu thức \({\left( {x - 2}

Câu hỏi số 379886:
Thông hiểu

Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của biểu thức \({\left( {x - 2} \right)^7}\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:379886
Phương pháp giải

Sử dụng công thức tính số hạng tổng quát \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\).

Giải chi tiết

Số hạng TQ: \({T_{k + 1}} = C_7^k.{x^{7 - k}}.{\left( { - 2} \right)^k}\)

Số hạng chứa \({x^3}\) ứng với \(7 - k = 3 \Leftrightarrow k = 4\).

Hệ số \(C_7^4.{\left( { - 2} \right)^4} = 560\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com