Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là :

Câu hỏi số 379915:
Vận dụng

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là :

Đáp án đúng là: C

Quảng cáo

Câu hỏi:379915
Phương pháp giải

- Tìm ĐK.

- Đặt \(t = {\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) đưa về phương trình ẩn \(t\) và kết luận.

Giải chi tiết

ĐK: \(x > 0\).

Đặt \(t = {\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) (Vì \(1 + \sqrt x  > 1 \Rightarrow t = {\log _2}\left( {1 + \sqrt x } \right) > 0\))

\( \Leftrightarrow \left\{ \begin{array}{l}x = {3^t}\\1 + \sqrt x  = {2^t}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {3^t}\\x = {\left( {{2^t} - 1} \right)^2}\end{array} \right.\)

\( \Rightarrow {3^t} = {\left( {{2^t} - 1} \right)^2} \Leftrightarrow {3^t} = {4^t} - {2.2^t} + 1\) \( \Leftrightarrow {\left( {\dfrac{3}{4}} \right)^t} = 1 - 2.{\left( {\dfrac{1}{2}} \right)^t} + {\left( {\dfrac{1}{4}} \right)^t}\)

\( \Leftrightarrow {\left( {\dfrac{3}{4}} \right)^t} + 2.{\left( {\dfrac{1}{2}} \right)^t} - {\left( {\dfrac{1}{4}} \right)^t} = 1\)

Xét hàm số \(f\left( t \right) = {\left( {\dfrac{3}{4}} \right)^t} + 2.{\left( {\dfrac{1}{2}} \right)^t} - {\left( {\dfrac{1}{4}} \right)^t}\) trên \(\left( {0; + \infty } \right)\) có:

\(f'\left( t \right) = {\left( {\dfrac{3}{4}} \right)^t}\ln \dfrac{3}{4} + 2{\left( {\dfrac{1}{2}} \right)^t}\ln \dfrac{1}{2} - {\left( {\dfrac{1}{4}} \right)^t}\ln \dfrac{1}{4}\) \( = {\left( {\dfrac{3}{4}} \right)^t}\ln \dfrac{3}{4} + 2{\left( {\dfrac{1}{2}} \right)^t}\ln \dfrac{1}{2} + 2.{\left( {\dfrac{1}{4}} \right)^t}\ln \dfrac{1}{2}\)

Mà \(\ln \dfrac{3}{4} < 0,\ln \dfrac{1}{2} < 0\) nên \(f'\left( t \right) < 0,\forall t > 0\).

Do đó hàm số \(f\left( t \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\).

Dễ thấy \(f\left( 2 \right) = 1\) nên phương trình \(f\left( t \right) = 1\) có nghiệm duy nhất \(t = 2\).

Suy ra \({\log _3}x = 2 \Leftrightarrow x = 9\).

Vậy phương trình có nghiệm duy nhất \(x = 9\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com