Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(n\) là số nguyên dương thỏa mãn \(C_{2n + 1}^1 + C_{2n + 1}^2 + ..... + C_{2n + 1}^n = {2^{24}} - 1\).

Câu hỏi số 380153:
Vận dụng

Cho \(n\) là số nguyên dương thỏa mãn \(C_{2n + 1}^1 + C_{2n + 1}^2 + ..... + C_{2n + 1}^n = {2^{24}} - 1\). Tìm hệ số của \({x^9}\) trong khai triển \({\left( {{x^2} - x + \dfrac{1}{4}} \right)^2}{\left( {2x - 1} \right)^{2n}}.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:380153
Phương pháp giải

Áp dụng tính chất \(C_n^k = C_n^{n - k}\).

Áp dụng nhị thức Niu-tơn.

Giải chi tiết

Ta có \(\left\{ \begin{array}{l}C_{2n + 1}^1 = C_{2n + 1}^{2n}\\C_{2n + 1}^2 = C_{2n + 1}^{2n - 1}\\...\\C_{2n + 1}^n = C_{2n + 1}^{n + 1}\end{array} \right.\)

\(\begin{array}{l} \Rightarrow A = C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n = C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + ... + C_{2n + 1}^{2n}\\ \Rightarrow A = \dfrac{{{2^{2n + 1}} - 2}}{2} = {2^{2n}} - 1\end{array}\)

Theo giả thiết ta có \(A = {2^{24}} - 1 \Rightarrow n = 12\)

Khi đó

\(\begin{array}{l}\,\,\,\,{\left( {{x^2} - x + \dfrac{1}{4}} \right)^2}{\left( {2x - 1} \right)^{24}} = {\left( {x - \dfrac{1}{2}} \right)^4}{\left( {2x - 1} \right)^{24}}\\ = \dfrac{{{{\left( {2x - 1} \right)}^{28}}}}{{16}} = \dfrac{1}{{16}}\sum\limits_{k \to 0}^{28} {C_{28}^k} {.2^k}.{x^k}.{\left( { - 1} \right)^{28 - k}}\end{array}\)

Khi đó hệ số của \({x^9}\)hay \(k = 9\) là \( - C_{28}^9{.2^5}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com