Cho tam giác \(ABC\) cân tại \(A.\) Gọi \(M,N,H\) theo thứ tự là trung điểm của \(AB,AC\) và
Cho tam giác \(ABC\) cân tại \(A.\) Gọi \(M,N,H\) theo thứ tự là trung điểm của \(AB,AC\) và \(BC.\)
a) Tứ giác \(BMNC\) và tứ giác \(BMNH\) là hình gì? Vì sao?
b) Gọi \(D\) là điểm đối xứng với \(H\) qua \(N.\) Chứng minh: \(ADCH\) là hình chữ nhật
c) Kẻ \(DE \bot AC,\) gọi \(K\) là trung điểm của \(EC.\) Qua \(K\) vẽ đường thẳng \(d \bot DK.\) Chứng minh: Ba đường thẳng \(AH,MN\) và \(d\) đồng qui (cùng gặp nhau tại 1 điểm)
Quảng cáo
a) Sử dụng: Tứ giác có hai cạnh đối song song là hình thang.
Hình thang có hai góc ở đáy bằng nhau là hình thang cân.
Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành.
b) Tứ giác có hai đường chéo giao nhau tại trung điểm mỗi đường là hình bình hành.
Hình bình hành có 1 góc vuông là hình chữ nhật.
c) Lấy \(P\) là trung điểm cạnh \(EP.\) Gọi \(I\) là giao điểm của \(MN\) và \(AH.\) Ta sẽ chứng minh \(IK \bot DK\)
Chỉ ra \(IAPK\) là hình bình hành, \(P\) là trực tâm tam giác \(ADK.\) Từ đó sử dụng quan hệ từ vuông góc đến song song để chứng minh \(IK \bot DK\).
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










