Hình giải tích trong không gian
Trong không gian với hệ trục tọa độ Oxyz cho điểm A(0; 1; 1), B(1; 0; -3), C(-1; -2; -3) và mặt cầu (S) có phương trình: x2 + y2 + z2 - 2x + 2z - 2 = 0
Tìm tọa độ điểm D trên mặt cầu (S) sao cho tứ diện ABCD có thể tích lớn nhất.
Đáp án đúng là: C
Quảng cáo
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


= (1; -1; -4);
= (-1; -3; -4)
= (-8; 8; -4)
.d(D; (ABC)).SABC nên VABCD lớn nhất khi và chỉ khi d(D; (ABC)) lớn nhất
= (2; -2; 1)


) hoặc D2 (
)










