Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số hạng chứa \({x^3}\) trong khai triển \({\left( {x + \dfrac{1}{{2x}}} \right)^9}\) với \(x \ne 0\) là

Câu hỏi số 381774:
Thông hiểu

Số hạng chứa \({x^3}\) trong khai triển \({\left( {x + \dfrac{1}{{2x}}} \right)^9}\) với \(x \ne 0\) là :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:381774
Phương pháp giải

Sử dụng công thức tính số hạng tổng quát \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\)

Giải chi tiết

Số hạng tổng quát \({T_{k + 1}} = C_9^k{x^{9 - k}}{\left( {\dfrac{1}{{2x}}} \right)^k}\)\( = C_9^2.\dfrac{1}{{{2^k}}}.{x^{9 - 2k}}\).

Số hạng chứa \({x^3}\) ứng với \(9 - 2k = 3 \Leftrightarrow k = 3\).

Vậy số hạng chứa \({x^3}\) là \(C_9^3.\dfrac{1}{{{2^3}}}.{x^3} = \dfrac{1}{8}C_9^3{x^3}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com