Số hạng chứa \({x^3}\) trong khai triển \({\left( {x + \dfrac{1}{{2x}}} \right)^9}\) với \(x \ne 0\) là
Số hạng chứa \({x^3}\) trong khai triển \({\left( {x + \dfrac{1}{{2x}}} \right)^9}\) với \(x \ne 0\) là :
Đáp án đúng là: B
Quảng cáo
Sử dụng công thức tính số hạng tổng quát \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\)
Đáp án cần chọn là: B
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












