Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một hộp có \(6\) viên bi xanh, \(4\) viên bi đỏ và \(5\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi

Câu hỏi số 381779:
Vận dụng

Một hộp có \(6\) viên bi xanh, \(4\) viên bi đỏ và \(5\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi trong hộp, tính xác suất để \(5\) viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng.  

Đáp án đúng là: B

Quảng cáo

Câu hỏi:381779
Phương pháp giải

- Tính số phần tử của không gian mẫu.

- Tính số các khả năng có lợi cho biến cố.

- Tính xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Giải chi tiết

Chọn \(5\) viên bi trong hộp có \(C_{15}^5 = 3003\) cách chọn hay \(n\left( \Omega  \right) = 3003\).

Gọi \(A\) là biến cố “\(5\) viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng”

+ TH1: \(1\) xanh, \(1\) vàng và \(3\) đỏ, có \(C_6^1.C_5^1.C_4^3 = 120\) cách chọn.

+ TH2: \(2\) xanh, \(2\) vàng và \(1\) đỏ, có \(C_6^2.C_5^2.C_4^1 = 600\) cách chọn.

Do đó \(n\left( A \right) = 120 + 600 = 720\) cách chọn.

Xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)\( = \dfrac{{720}}{{3003}} = \dfrac{{240}}{{1001}}\).

Chọn B.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com