Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong một nhóm học sinh khối \(11\) tham gia hoạt động thiện nguyện gồm\(3\) học sinh nữ và

Câu hỏi số 381782:
Vận dụng

Trong một nhóm học sinh khối \(11\) tham gia hoạt động thiện nguyện gồm\(3\) học sinh nữ và \(7\) học sinh nam. Cần chọn ra \(5\) học sinh tham gia trong đợt thứ nhất. Tính xác suất để \(5\) học sinh được chọn không có quá \(1\) học sinh nữ.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:381782
Phương pháp giải

- Tính số phần tử của không gian mẫu.

- Tính số các khả năng có lợi cho biến cố.

- Tính xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Giải chi tiết

Chọn \(5\) học sinh trong \(10\) học sinh, \(n\left( \Omega  \right) = C_{10}^5 = 252\).

Gọi \(A\) là biến cố: “Chọn được không quá một học sinh nữ”.

+ TH1: Có \(1\) học sinh nữ và \(4\) học sinh nam có \(C_3^1.C_7^4 = 105\) cách.

+ TH2: Có \(0\) học sinh nữ và \(5\) học sinh nam có \(C_3^0.C_7^5 = 21\) cách.

Do đó \(n\left( A \right) = 105 + 21 = 126\).

Xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{126}}{{252}} = \dfrac{1}{2}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com