Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng tọa độ Oxy, cho các điểm A(4; 3), B(0; –1), C(1;–2). Tìm tọa độ điểm M biết

Câu hỏi số 382940:
Vận dụng

Trong mặt phẳng tọa độ Oxy, cho các điểm A(4; 3), B(0; –1), C(1;–2). Tìm tọa độ điểm M biết rằng vetco \( - 2\overrightarrow {MA}  + 3\overrightarrow {MB}  - 3\overrightarrow {MC} \) có tọa độ là (1; 7).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:382940
Phương pháp giải

Cho các vecto \(\overrightarrow a  = \left( {{a_1};\,\,{a_2}} \right),\,\,\overrightarrow b  = \left( {{b_1};\,\,{b_2}} \right)\) và \(k \in \mathbb{R}\) ta có: \(\left\{ \begin{array}{l}\overrightarrow a  + \overrightarrow b  = \left( {{a_1} + {b_1};\,\,{a_2} + {b_2}} \right)\\k\overrightarrow a  = k\left( {{a_1};\,\,{a_2}} \right) = \left( {k{a_1};\,\,k{a_2}} \right)\end{array} \right..\)

Giải chi tiết

Gọi M (a; b).

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MA}  = \left( {4 - a;\,\,3 - b} \right)\\\overrightarrow {MB}  = \left( { - a; - 1 - b} \right)\\\overrightarrow {MC}  = \left( {1 - a; - 2 - b} \right)\end{array} \right. \Rightarrow  - 2\overrightarrow {MA}  + 3\overrightarrow {MB}  - 3\overrightarrow {MC}  = \left( {1;\,\,7} \right)\\ \Leftrightarrow  - 2\left( {4 - a;\,\,3 - b} \right) + 3\left( { - a; - 1 - b} \right) - 3\left( {1 - a; - 2 - b} \right) = \left( {1;\,\,7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l} - 2\left( {4 - a} \right) + 3\left( { - a} \right) - 3\left( {1 - a} \right) = 1\\ - 2\left( {3 - b} \right) + 3\left( { - 1 - b} \right) - 3\left( { - 2 - b} \right) = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 8 + 2a - 3a - 3 + 3a = 1\\ - 6 + 2b - 3 - 3b + 6 + 3b = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2a = 12\\2b = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 5\end{array} \right. \Rightarrow M\left( {6;\,\,5} \right).\end{array}\)

Đáp án  A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com