Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng

Câu hỏi số 384015:
Vận dụng

Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 4{m^2} - 8m + 3\) (\(m\) là tham số thực). Tìm các giá trị của \(m\) để \(\left( d \right)\) và \(\left( P \right)\) cắt nhau tại hai điểm phân biệt \(A\left( {{x_1};\,\,{y_1}} \right),\,\,B\left( {{x_2};\,\,{y_2}} \right)\) thỏa mãn điều kiện \({y_1} + {y_2} = 10.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:384015
Giải chi tiết

\(\left( P \right):\,\,y = {x^2};\,\,\left( d \right):\,\,y = 2x + 4{m^2} - 8m + 3\)

Phương trình hoành độ giao điểm của (P) và (d) là : \({x^2} - 2x - 4{m^2} + 8m - 3 = 0\)  (1)

Số giao điểm của (d) và (P) cũng chính là số nghiệm của phương trình (1).

Để (d) cắt (P) tại hai điểm phân biệt \(A\left( {{x_1};{y_1}} \right);\,\,B\left( {{x_2};{y_2}} \right)\) khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt \({x_1};\,\,{x_2}\).

Ta có: \(\Delta ' = {\left( { - 1} \right)^2} + 4{m^2} - 8m + 3 = \,\,4{m^2} - 8m + 4 = \,\,4{\left( {m - 1} \right)^2}\)

Phương trình (1) có 2 nghiệm phân biệt \({x_1};{x_2}\) khi và chỉ khi  \(\Delta ' > 0 \Leftrightarrow 4{\left( {m - 1} \right)^2} > 0 \Leftrightarrow m \ne 1\)

Áp dụng hệ thức Vi-et cho phương trình (1) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} =  - 4{m^2} + 8m - 3\end{array} \right.\)

Theo đề bài ta có:

\(\begin{array}{l}{y_1} + {y_2} = 10 \Leftrightarrow x_1^2 + x_2^2 = 10 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow {2^2} - 2.\left( { - 4{m^2} + 8m - 3} \right) = 10 \Leftrightarrow 4 + 8{m^2} - 16m + 6 = 10\\ \Leftrightarrow 8{m^2} - 16m = 0 \Leftrightarrow 8m\left( {m - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\,\left( {tm} \right)\\m = 2\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy với \(m = 0;\,\,m = 2\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com