Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện đều \(ABCD\) cạnh \(a.\) Khối nón đỉnh \(A\) và đáy là đường tròn ngoại tiếp

Câu hỏi số 384520:
Vận dụng

Cho tứ diện đều \(ABCD\) cạnh \(a.\) Khối nón đỉnh \(A\) và đáy là đường tròn ngoại tiếp tam giác \(BCD\) có thể tích bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:384520
Phương pháp giải

Thể tích khối nón  có bán kính đáy \(R\) và chiều cao \(h:\;\;\;V = \dfrac{1}{3}\pi {R^2}h.\)

Giải chi tiết

Gọi \(O\) là tâm đường tròn ngoại tiếp \(\Delta BCD.\)

Ta có bán kính đường tròn ngoại tiếp \(\Delta BCD\) là: \(R = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}.\)

Áp dụng định lý Pitago cho \(\Delta ABO\) vuông tại \(O\) ta có:

\(\begin{array}{l}OA = \sqrt {A{B^2} - O{B^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt 6 }}{3}.\\ \Rightarrow {V_{non}} = \dfrac{1}{3}\pi .O{B^2}.OA = \dfrac{1}{3}\pi .\dfrac{{{a^2}}}{3}.\dfrac{{a\sqrt 6 }}{3} = \dfrac{{\pi {a^3}\sqrt 6 }}{{27}}.\end{array}\)

Chọn  A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com