Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = 2a,AD = a\), tam giác \(SAD\) là tam giác đều
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = 2a,AD = a\), tam giác \(SAD\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(M\)là trung điểm của \(AB,\) \(H\) là hình chiếu vuông góc của \(D\) trên \(AC,\) \(I\) là trung điểm của \(HC.\) Tính bán kính mặt cầu ngoại tiếp hình chóp \(S.MID.\)
Đáp án đúng là: A
Quảng cáo
- Chứng minh tứ giác \(ADIM\) là tứ giác nội tiếp. Xác định tâm đường tròn ngoại tiếp tứ giác \(ADIM\).
- Tâm mặt cầu ngoại tiếp chóp \(S.ADIM\) là giao điểm của hai trục của 2 mặt \(\left( {SAD} \right)\) và \(\left( {ADIM} \right)\).
- Áp dụng tính chất tam giác đều và định lí Pytago tính bán kính mặt cầu ngoại tiếp chóp \(S.ADIM\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













