Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ đứng \(ABC.A'B'C'\) có \(BC = AB = a\), \(AC = a\sqrt 3 \). Biết \(B'C\) tạo với đáy góc

Câu hỏi số 385326:
Vận dụng

Cho lăng trụ đứng \(ABC.A'B'C'\) có \(BC = AB = a\), \(AC = a\sqrt 3 \). Biết \(B'C\) tạo với đáy góc \({60^0}\). Tính diện tích mặt cầu ngoại tiếp tứ diện \(AC'B'B\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:385326
Phương pháp giải

- Xác định tâm mặt cầu ngoại tiếp là điểm cách đều 4 đỉnh của tứ diện.

- Áp dụng định lí Pytago để tính bán kính \(R\) của mặt cầu.

- Diện tích mặt cầu bán kính \(R\) là \(S = 4\pi {R^2}\).

Giải chi tiết

Gọi \(M\) là trung điểm của \(AC\) và \(O\) là điểm đối xứng \(B\) qua \(M\).

Ta có \(AM = MC = \frac{{a\sqrt 3 }}{2}\) và \(BM \bot AC\) (do tam giác \(ABC\) cân tại \(B\)).

Áp dụng định lí Pytago trong tam giác vuông \(ABM\) có: \(BM = \sqrt {A{B^2} - A{M^2}} \) \( = \sqrt {{a^2} - \frac{{3{a^2}}}{4}}  = \frac{a}{2}\).

\( \Rightarrow OB = 2OM = a\).

Xét tứ giác \(ABCO\) có: \(\left\{ \begin{array}{l}MA = MI\\MB = MO\\AC \bot OB\end{array} \right.\) \( \Rightarrow ABCO\) là hình thoi.

\( \Rightarrow OA = OI = AB = BC = a\).

\( \Rightarrow OA = OB = OC\) \( \Rightarrow O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

Gọi \(N\) là trung điểm của \(BB'\), qua \(N\) kẻ mặt phẳng vuông góc với \(BB'\) cắt đường thẳng qua \(O\) và vuông góc với \(\left( {ABC} \right)\) tại \(I\) ta có:

\(I\) thuộc đường thẳng qua \(O\) và vuông góc với \(\left( {ABC} \right)\) \( \Rightarrow IA = IB = IC\).

\(I\) thuộc mặt phẳng vuông góc với \(BB'\)  tại \(N\) \( \Rightarrow IB = IB'\).

\( \Rightarrow IA = IB = IC = IB'\) \( \Rightarrow I\) thuộc trục của \(\left( {ABB'} \right)\), chính là trục của \(\left( {ABB'A'} \right)\).

\( \Rightarrow IA = IB = IC = IB' = IA'\) \( \Rightarrow I\) thuộc trục của \(\left( {AA'C} \right)\), chính là trục của \(\left( {ACC'A'} \right)\).

\( \Rightarrow IA = IB = IC = IB' = IA' = IC'\), do đó \(I\) chính là tâm mặt cầu ngoại tiếp tứ diện \(AC'B'B\).

Ta có: \(BB' \bot \left( {ABC} \right)\)\( \Rightarrow \angle \left( {B'C;\left( {ABC} \right)} \right) = \angle \left( {B'C;BC} \right) = \angle B'CB = {60^0}\).

\( \Rightarrow BB' = BC.\tan {60^0} = a\sqrt 3 \) \( \Rightarrow OI = BN = \frac{1}{2}BB' = \frac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông \(OAI\) có: \(IA = \sqrt {O{A^2} + O{I^2}} \) \( = \sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}  = \frac{{a\sqrt 7 }}{2}\).

\( \Rightarrow R = \frac{{a\sqrt 7 }}{2}\) \( \Rightarrow {S_{mc}} = 4\pi {R^2} = 7\pi {a^2}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com