Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right) = m{x^4} + 2{x^2} - 1\) với \(m\) là tham số thực. Có tất cả bao

Câu hỏi số 385327:
Vận dụng

Cho hàm số \(y = f\left( x \right) = m{x^4} + 2{x^2} - 1\) với \(m\) là tham số thực. Có tất cả bao nhiêu giá trị nguyên của \(m\) thuộc khoảng \(\left( { - 2019;2020} \right)\) sao cho hàm số đã cho đồng biến trên khoảng \(\left( {0;\frac{1}{2}} \right)\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:385327
Phương pháp giải

- Cô lập \(m\), đưa bất phương trình về dạng \(m > g\left( x \right)\,\,\forall x \in \left( {a;b} \right)\) \( \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ {a;b} \right]} g\left( x \right)\).

- Tìm GTNN của hàm số \(g\left( x \right)\) bằng phương pháp hàm số hoặc đánh giá.

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có \(y' = 4m{x^3} + 4x\).

Để hàm số đồng biến trên \(\left( {0;\frac{1}{2}} \right)\) thì \(y' > 0\,\,\forall x \in \left( {0;\frac{1}{2}} \right)\).

\( \Rightarrow 4m{x^3} + 4x > 0\,\,\,\forall x \in \left( {0;\frac{1}{2}} \right)\).

\( \Rightarrow 4m{x^3} >  - 4x\,\,\,\forall x \in \left( {0;\frac{1}{2}} \right)\) \( \Leftrightarrow m > \frac{{ - 1}}{{{x^2}}}\,\,\forall x \in \left( {0;\frac{1}{2}} \right)\)\( \Leftrightarrow m \ge \mathop {\max }\limits_{\left( {0;\frac{1}{2}} \right]} \left( { - \frac{1}{{{x^2}}}} \right)\).

Ta có: \(0 < x \le \frac{1}{2}\)\( \Rightarrow 0 < {x^2} \le \frac{1}{4}\) \( \Leftrightarrow \frac{1}{{{x^2}}} \ge 4 \Leftrightarrow  - \frac{1}{{{x^2}}} \le  - 4\,\,\forall  \in \left( {0;\frac{1}{2}} \right)\).

\( \Rightarrow \mathop {\max }\limits_{\left( {0;\frac{1}{2}} \right]} \left( { - \frac{1}{{{x^2}}}} \right) =  - 4\) , suy ra \(m \ge  - 4\).

Kết hợp điều kiện \(m \in \left( { - 2019;2020} \right)\), \(m \in \mathbb{Z}\) \( \Rightarrow \left\{ \begin{array}{l} - 4 \le m < 2020\\m \in \mathbb{Z}\end{array} \right.\)\( \Rightarrow m \in \left\{ { - 4; - 3; - 2;...;2019} \right\}\).

Vậy có 2024 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com