Tìm a trong khai triển \(\left( {1 + ax} \right){\left( {1 - 3x} \right)^6}\), biết hệ số của số hạng
Tìm a trong khai triển \(\left( {1 + ax} \right){\left( {1 - 3x} \right)^6}\), biết hệ số của số hạng chứa \({x^3}\) là 405
Đáp án đúng là: B
Quảng cáo
\(\left( {1 + ax} \right){\left( {1 - 3x} \right)^6} = {\left( {1 - 3x} \right)^6} + ax{\left( {1 - 3x} \right)^6}\)
Đặt \(\left\{ \begin{array}{l}A = {\left( {1 - 3x} \right)^6}\\B = ax{\left( {1 - 3x} \right)^6}\end{array} \right.\)
+ Xét số hạng tổng quát của A là: \(T_{k + 1}^{} = C_6^k{.1^{6 - k}}{\left( { - 3x} \right)^k} = C_6^k{\left( { - 3} \right)^k}.{x^k}\)
Số hạng chứa \({x^3}\)ứng với: \({x^k} = {x^3} \Rightarrow k = 3\)
\( \Rightarrow \)Hệ số của số hạng chứa \({x^3}\) trong khai triển của A là: \(C_6^3{\left( { - 3} \right)^3}.{x^3} = - 540\,\,\,(1)\)
+ Xét số hạng tổng quát của B là: \(T_{k + 1}^{} = C_6^k{.1^{6 - k}}{\left( { - 3x} \right)^k}{\rm{.}}\left( {{\rm{ax}}} \right) = C_6^k{\left( { - 3} \right)^k}.{x^k}{\rm{.}}\left( {{\rm{ax}}} \right) = C_6^k{\left( { - 3} \right)^k}.a.{x^{k + 1}}\)
Số hạng chứa \({x^3}\)ứng với:\({x^3} = {x^{k + 1}} \Rightarrow k = 2\)
\( \Rightarrow \)Hệ số của số hạng chứa \({x^3}\) trong khai triển của B là:\(C_6^2{\left( { - 3} \right)^2}.a = 135a\,\,\,\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow - 540{x^3} + 135a{x^3} = 405{x^3} \Rightarrow a = 7\).
Chọn B.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com