Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a\). Gọi \(M\) là trung điểm của cạnh
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a\). Gọi \(M\) là trung điểm của cạnh \(AB\) và \(SM = 2a\). Tính cosin góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy.

Đáp án đúng là: A
Quảng cáo
- Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Áp dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính cosin góc giữa hai mặt phẳng xác định được.
Góc giữa hai mặt phẳng là góc nhỏ hơn hoặc bằng \({90^0}\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













