Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bất phương trình sau: \(\frac{{{x^2} - 4}}{{x + 1}} \ge 0\)

Câu hỏi số 389569:
Thông hiểu

Giải bất phương trình sau: \(\frac{{{x^2} - 4}}{{x + 1}} \ge 0\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:389569
Phương pháp giải

Tìm điều kiện để biểu thức có nghĩa sau đó lập bảng xét dấu.

Giải chi tiết

Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1.\)

\(\frac{{{x^2} - 4}}{{x + 1}} \ge 0 \Leftrightarrow \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 1}} \ge 0\)

Xét \(\left( {x - 2} \right)\left( {x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x - 2 = 0\\x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 2\end{array} \right.\)

Ta có bảng xét dấu:

Vậy \(\frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 1}} \ge 0 \Leftrightarrow \,\left[ \begin{array}{l} - 2 \le x <  - 1\\x \ge 2\end{array} \right..\)

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com