Bất phương trình \(\left| {2{x^2} + 3x + 1} \right| > x - 1\) có bao nhiêu nghiệm nguyên?
Bất phương trình \(\left| {2{x^2} + 3x + 1} \right| > x - 1\) có bao nhiêu nghiệm nguyên?
Đáp án đúng là: A
Quảng cáo
Giải bất phương trình chứa dấu giá trị tuyệt đối: \(\left| {f\left( x \right)} \right| > g\left( x \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) > g\left( x \right)\\f\left( x \right) < - g\left( x \right)\end{array} \right..\)
Đáp án cần chọn là: A
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












