Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho phương trình \(2m{\cos ^2}x + 2\sin 2x + m - 1 = 0\). Có bao nhiêu số nguyên của m để phương trình

Câu hỏi số 390599:
Vận dụng

Cho phương trình \(2m{\cos ^2}x + 2\sin 2x + m - 1 = 0\). Có bao nhiêu số nguyên của m để phương trình trên có đúng một nghiệm thuộc \(\left[ {0;\dfrac{\pi }{4}} \right]\) ?

Đáp án đúng là: B

Phương pháp giải

- Xét hai trường hợp \(\cos x = 0\) và \(\cos x \ne 0\).

- Chia cả 2 vế của phương trình cho \({\cos ^2}x\), đặt ẩn phụ \(t = \tan x\).

- Tìm khoảng giá trị của \(t\) ứng với \(x \in \left[ {0;\dfrac{\pi }{4}} \right]\).

- Cô lập \(m\), đưa phương trình về dạng \(m = f\left( t \right)\).

- Lập BBT của hàm số \(y = f\left( t \right)\) và kết luận.

Giải chi tiết

\(\begin{array}{l}\,\,\,\,\,2m{\cos ^2}x + 2\sin 2x + m - 1 = 0\,\,\,\,\,\left( 1 \right)\\ \Leftrightarrow 2m{\cos ^2}x + 4\sin x\cos x + m - 1 = 0\end{array}\)

TH1: \(\cos x = 0 \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1\).

Khi đó phương trình có nghiệm \(x = \dfrac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Họ nghiệm này không có nghiệm thuộc \(\left[ {0;\dfrac{\pi }{4}} \right] \Rightarrow m = 1\) loại.

TH2: \(\cos x \ne 0\), chia cả 2 vế của phương trình cho \({\cos ^2}x\) ta được:

\(\begin{array}{l} \Rightarrow 2m + 4\tan x + \left( {m - 1} \right)\left( {1 + {{\tan }^2}x} \right) = 0\\ \Leftrightarrow \left( {m - 1} \right){\tan ^2}x + 4\tan x + 3m - 1 = 0\,\,\,\left( 2 \right)\end{array}\)

Đặt \(\tan x = t\), với \(x \in \left[ {0;\dfrac{\pi }{4}} \right]\) thì \(t \in \left[ {0;1} \right]\), khi đó phương trình (2) trở thành:

\(\left( {m - 1} \right){t^2} + 4t + 3m - 1 = 0\,\,\,\,\left( 3 \right)\)

Để phương trình (1) có nghiệm duy nhất thuộc \(\left[ {0;\dfrac{\pi }{4}} \right]\) thì phương trình (3) có nghiệm \(t\) duy nhất thuộc \(\left[ {0;1} \right].\)

Ta có: \(\left( 3 \right) \Leftrightarrow m\left( {{t^2} + 3} \right) = {t^2} - 4t + 1\)\( \Leftrightarrow m = \dfrac{{{t^2} - 4t + 1}}{{{t^2} + 3}}\,\,\left( * \right)\)

Đặt  \(g\left( t \right) = \dfrac{{{t^2} - 4t + 1}}{{{t^2} + 3}}\) ta có:

\(\begin{array}{l}g'\left( t \right) = \dfrac{{\left( {2t - 4} \right)\left( {{t^2} + 3} \right) - \left( {{t^2} - 4t + 1} \right)2t}}{{{{\left( {{t^2} + 3} \right)}^2}}}\\g'\left( t \right) = \dfrac{{2{t^3} + 6t - 4{t^2} - 12 - 2{t^3} + 8{t^2} - 2t}}{{{{\left( {{t^2} + 3} \right)}^2}}}\\g'\left( t \right) = \dfrac{{4{t^2} + 4t - 12}}{{{{\left( {{t^2} + 3} \right)}^2}}}\\g'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = \dfrac{{ - 1 + \sqrt {13} }}{2}\,\,\,\left( {ktm} \right)\\t = \dfrac{{ - 1 - \sqrt {13} }}{2}\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

Bảng biến thiên:

Để phương trình (*) có nghiệm duy nhất \(t \in \left[ {0;1} \right]\) thì \(m \in \left[ { - \dfrac{1}{2};\dfrac{1}{3}} \right]\).

Mà \(m \in \mathbb{Z}\) nên \(m = 0\).

Vậy có duy nhất một giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Chọn B.

Câu hỏi:390599

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com