Cho phương trình \(2m{\cos ^2}x + 2\sin 2x + m - 1 = 0\). Có bao nhiêu số nguyên của m để phương trình
Cho phương trình \(2m{\cos ^2}x + 2\sin 2x + m - 1 = 0\). Có bao nhiêu số nguyên của m để phương trình trên có đúng một nghiệm thuộc \(\left[ {0;\dfrac{\pi }{4}} \right]\) ?
Đáp án đúng là: B
Quảng cáo
- Xét hai trường hợp \(\cos x = 0\) và \(\cos x \ne 0\).
- Chia cả 2 vế của phương trình cho \({\cos ^2}x\), đặt ẩn phụ \(t = \tan x\).
- Tìm khoảng giá trị của \(t\) ứng với \(x \in \left[ {0;\dfrac{\pi }{4}} \right]\).
- Cô lập \(m\), đưa phương trình về dạng \(m = f\left( t \right)\).
- Lập BBT của hàm số \(y = f\left( t \right)\) và kết luận.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













