Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) đều tất cả các cạnh bằng \(a\). Gọi \(M,\,\,N\) lần lượt là trung

Câu hỏi số 390600:
Vận dụng cao

Cho hình chóp \(S.ABCD\) đều tất cả các cạnh bằng \(a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,BC\).Tính \({\rm{cosin}}\) góc giữa \(MN\) và mặt phẳng \(\left( {SBD} \right)\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:390600
Giải chi tiết

Gọi \(AC \cap BD = \left\{ H \right\} \Rightarrow SH \bot \left( {ABCD} \right).\)

Ta có: \(\left\{ \begin{array}{l}AC \bot BD\,\,\left( {gt} \right)\\AC \bot SH\,\,\left( {SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)\( \Rightarrow AC \bot \left( {SBD} \right)\)

Gọi F là trung điểm của BH \( \Rightarrow NF\parallel AC\) (Do \(NF\) là đường trung bình của tam giác \(BCH\)).

Mà \(AC \bot \left( {SBD} \right)\) \( \Rightarrow NF \bot \left( {SBD} \right).\)

Trong mặt phẳng \(\left( {ABCD} \right)\) gọi \(AN \cap BD = \left\{ K \right\}\)

Trong mặt phẳng \(\left( {SAN} \right)\) gọi \(SK \cap MN = \left\{ I \right\}\)

\( \Rightarrow I = MN \cap \left( {SBD} \right)\).

\( \Rightarrow \angle \left( {MN;\left( {SBD} \right)} \right) = \angle \left( {NI;\left( {SBD} \right)} \right)\).

Ta có: \(FI\) là hình chiếu của \(MI\) lên \(\left( {SBD} \right)\) \( \Rightarrow \angle \left( {NI;\left( {SBD} \right)} \right) = \angle \left( {NI;FI} \right) = \angle NIF\).

Xét tam giác \(ABC\) có \(K\) là giao điểm của hai đường trung tuyến \(AN\) và \(BH\) nên \(K\) là trọng tâm của tam giác \(ABC\).

Áp dụng định lí Menelaus trong tam giác \(AMN\), cát tuyến \(SIK\) có:

\(\dfrac{{SM}}{{SA}}.\dfrac{{KA}}{{KN}}.\dfrac{{IN}}{{IM}} = 1\) \( \Leftrightarrow \dfrac{1}{2}.2.\dfrac{{IN}}{{IM}} = 1 \Leftrightarrow \dfrac{{IN}}{{IM}} = 1\) \( \Rightarrow IM = IN\) \( \Rightarrow I\) là trung điểm của \(MN\).

Ta có: \(NF = \dfrac{{HC}}{2} = \dfrac{{AC}}{4} = \dfrac{{a\sqrt 2 }}{4}\)(Tính chất đường trung bình của tam giác).

Tam giác \(SBC\) đều cạnh \(a\) nên \(SN = \dfrac{{a\sqrt 3 }}{2}.\)

Tam giác \(ABN\) vuông tại \(B\) nên áp dụng định lí Pytago ta có:

\(A{N^2} = A{B^2} + B{N^2} = {a^2} + {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{5{a^2}}}{4}.\)

Tam giác \(SAN\) có trung tuyến \(MN\)  nên:

\(\begin{array}{l}M{N^2} = \dfrac{{A{N^2} + S{N^2}}}{2} - \dfrac{{S{A^2}}}{4} = \dfrac{{\dfrac{{3{a^2}}}{4} + \dfrac{{5{a^2}}}{4}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{3{a^2}}}{4}.\\ \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2}\end{array}\)

\( \Rightarrow NI = \dfrac{{MN}}{2} = \dfrac{{a\sqrt 3 }}{4}.\)

Vì \(FN \bot \left( {SBD} \right) \Rightarrow FN \bot FI \Rightarrow \Delta FNI\) vuông tại \(F\).

\(\begin{array}{l} \Rightarrow \sin \angle FIN = \dfrac{{NF}}{{NI}} = \dfrac{{a\sqrt 2 }}{4}:\dfrac{{a\sqrt 3 }}{4} = \dfrac{{\sqrt 2 }}{{\sqrt 3 }}\\ \Rightarrow \cos \angle FIN = \sqrt {1 - {{\sin }^2}\angle FIN}  = \dfrac{{\sqrt 3 }}{3}.\end{array}\)

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com