Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AD\,\left( {D \in BC} \right)\). Gọi \(I\) là trung
Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AD\,\left( {D \in BC} \right)\). Gọi \(I\) là trung điểm của \(AC,\) kẻ \(AH\) vuông góc với \(BI\) tại \(H.\)
a) Chứng minh tứ giác \(ABDH\) nội tiếp. Tìm tâm đường tròn ngoại tiếp tứ giác \(ABDH.\)
b) Chứng minh tam giác \(BDH\) đồng dạng với tam giác \(BIC.\)
c) Chứng minh \(AB.HD = AH.BD = \frac{1}{2}AD.BH\)
Quảng cáo
a) Chỉ ra tứ giác có hai đỉnh kề nhau cùng nhìn một cạng dưới các góc bàng nhau là tứ giác nội tiếp
b) Chứng minh hai tam giác đồng dạng theo trường hợp góc –góc.
c) Chứng minh các cặp tam giác đồng dạng tương ứng để suy ra các đẳng thức cần chứng minh.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










