Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^3} - 3{x^2} + 2\). Phương trình tiếp tuyến với đồ thị hàm số tại giao điểm

Câu hỏi số 390989:
Thông hiểu

Cho hàm số \(y = {x^3} - 3{x^2} + 2\). Phương trình tiếp tuyến với đồ thị hàm số tại giao điểm của đồ thị với trục tung là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:390989
Phương pháp giải

- Xác định giao điểm của đồ thị hàm số với trục tung.

- Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\)là: \(y = f'\left( {{x_0}} \right).\left( {x - {x_0}} \right) + {y_0}\).

Giải chi tiết

Cho \(x = 0 \Rightarrow \)\(y = 2 \Rightarrow \) Đồ thị hàm số cắt trục tung tại điểm \(M\left( {0;2} \right)\).

Ta có: \(y' = 3{x^2} - 6x \Rightarrow y'\left( 0 \right) = 0\).

Phương trình tiếp tuyến với đồ thị hàm số tại\(M\left( {0;2} \right)\) là: \(y = 0.\left( {x - 0} \right) + 2 \Leftrightarrow y = 2.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com