Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \(\left( C \right):{x^2} + {y^2} + 2x + 4y - 31 = 0\) có tâm \(I.\)  Đường thẳng \(d\)

Câu hỏi số 393560:
Vận dụng cao

Cho đường tròn \(\left( C \right):{x^2} + {y^2} + 2x + 4y - 31 = 0\) có tâm \(I.\)  Đường thẳng \(d\) thay đổi cắt đường tròn \(\left( C \right)\) tại hai điểm phân biệt \(A,\,\,B\)  với \(AB\)  không là đường kính của đường tròn \(\left( C \right)\). Diện tích tam giác \(IAB\)  có giá trị lớn nhất bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:393560
Phương pháp giải

Sử dụng bất đẳng thức AM-GM tìm giá trị lớn nhất.

Giải chi tiết

\(\left( C \right):{x^2} + {y^2} + 2x + 4y - 31 = 0 \Leftrightarrow \left( C \right):{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 36.\)

Vậy \(I\left( { - 1; - 2} \right),R = 6.\)

Gọi \(H\) là chân đường cao hạ từ \(I\) xuống \(AB\), thì \(H\) là trung điểm của \(AB\).

\({S_{IAB}} = \frac{1}{2}IH.AB = IH.HA\mathop  \le \limits^{AM - GM} \frac{{I{H^2} + H{A^2}}}{2} = \frac{{I{A^2}}}{2} = \frac{{{R^2}}}{2} = 18.\)

Vậy diện tích tam giác \(IAB\) có giá trị lớn nhất là \(18.\)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com