Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm tất cả các giá trị của m để

Câu hỏi số 393662:
Vận dụng

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.

Tìm tất cả các giá trị của m để phương trình \(\left| {f\left( x \right)} \right| + 1 = m\) có 4 nghiệm phân biệt

Đáp án đúng là: A

Quảng cáo

Câu hỏi:393662
Phương pháp giải

- Cách vẽ đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\).

   + Vẽ đồ thị hàm số \(y = f\left( x \right)\).

   + Lấy đối xứng phần đồ thị hàm số phía dưới trục \(Ox\) qua trục \(Ox\).

   + Xóa đi phần đồ thị hàm số phía dưới trục \(Ox\).

- Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m - 1\) là giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đườn thẳng \(y = m - 1\) có tính chất song song với trục hoành.

Giải chi tiết

Ta có \(\left| {f\left( x \right)} \right| + 1 = m \Leftrightarrow \left| {f\left( x \right)} \right| = m - 1\)(*).

Số nghiệm của phương trình (*) là giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đườn thẳng \(y = m - 1\) có tính chất song song với trục hoành.

Từ đồ thị hàm số \(y = f\left( x \right)\) ta suy ra đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) như sau:

Dựa vào đồ thị ta thấy phương trình (*) có 4 nghiệm phân biệt khi \(1 < m - 1 < 3 \Leftrightarrow 2 < m < 4.\)

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com