Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tập hợp các điểm biểu diễn số phức \(z\), biết rằng số phức \({z^2}\) có điểm biểu

Câu hỏi số 394471:
Thông hiểu

Tìm tập hợp các điểm biểu diễn số phức \(z\), biết rằng số phức \({z^2}\) có điểm biểu diễn nằm trên trục tung.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:394471
Phương pháp giải

Phương pháp tìm tập hợp điểm biểu diễn số phức

Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)

Bước 2: Thay \(z\) vào đề bài \( \Rightarrow \) Sinh ra một phương trình:

+) Đường thẳng: \(Ax + By + C = 0.\)

+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)

+) Parabol: \(y = a.{x^2} + bx + c\)

+) Elip: \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\)

Giải chi tiết

Giả sử \(z = a + bi\), ta có \({z^2} = {\left( {a + bi} \right)^2} = {a^2} - {b^2} + 2abi\).

Số phức \({z^2}\) có điểm biểu diễn nằm trên trục tung khi \({a^2} - {b^2} = 0 \Leftrightarrow a =  \pm b\).

Vậy tập hợp các điểm biểu diễn số phức \(z\) là đường phân giác góc phần tư (I), (III) và đường phân giác góc phần tư (II), (IV).

Chú ý khi giải

- Nhầm lẫn điều kiện để điểm biểu diễn nằm trên trục tung và cho \(2ab = 0\) dẫn đến kết quả sai.

- Chưa phân biệt được các góc phần tư trong hệ tọa độ \(Oxy\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com